dc.contributor.author | Gómez Pérez, Domingo | |
dc.contributor.author | Ostafe, Alina | |
dc.contributor.author | Shparlinski, Igor E. | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2016-01-25T09:02:29Z | |
dc.date.available | 2016-01-25T09:02:29Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.issn | 1088-6842 | |
dc.identifier.uri | http://hdl.handle.net/10902/7949 | |
dc.description.abstract | ABSTRACT: We present several general results that show how algebraic dynamical systems with a slow degree growth and also rational automorphisms can be used to construct stronger pseu-dorandom number generators. We then give several concrete constructions that illustrate the applicability of these general results. | es_ES |
dc.format.extent | 20 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | © American Mathematical Society First published in Mathematics of Computation in 83(287) 2014, published by the American Mathematical Society | es_ES |
dc.source | Mathematics of Computation Volume 83, Issue 287, May 2014, Pages 1535-1550 | es_ES |
dc.subject.other | Polynomial iterations | es_ES |
dc.subject.other | Pseudorandom numbers | es_ES |
dc.title | Algebraic entropy, automorphisms and sparsity of algebraic dynamical systems and pseudorandom number generators | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1090/S0025-5718-2013-02780-9 | |
dc.type.version | acceptedVersion | es_ES |