dc.contributor.author | Andradas, Carlos | |
dc.contributor.author | Recio Muñiz, Tomás | |
dc.contributor.author | Sendra Pons, Juan Rafael | |
dc.contributor.author | Tabera Alonso, Luis Felipe | |
dc.contributor.author | Villarino Cabellos, Carlos | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2014-10-22T12:05:11Z | |
dc.date.available | 2014-10-22T12:05:11Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0938-1279 | |
dc.identifier.issn | 1432-0622 | |
dc.identifier.other | MTM2011-25816-C02-02 | |
dc.identifier.uri | http://hdl.handle.net/10902/5394 | |
dc.description.abstract | Let K⊆R be a computable subfield of the real numbers (for instance, Q). We present an algorithm to decide whether a given parametrization of a rational swung surface, with coefficients in K(i), can be reparametrized over a real (i.e., embedded in R) finite field extension of K. Swung surfaces include, in particular, surfaces of revolution. | es_ES |
dc.format.extent | 29 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Berlin Heidelberg | es_ES |
dc.rights | © Springer Berlin Heidelberg, 2014. The final publication is available at Springer via http://dx.doi.org/10.1007/s00200-014-0215-6 | es_ES |
dc.source | Applicable Algebra in Engineering, Communication and Computing, Vol. 25, Iss. 1-2 , pp 39-65, (2014) | es_ES |
dc.subject.other | Swung surfaces | es_ES |
dc.subject.other | Revolution surfaces | es_ES |
dc.subject.other | Real and complex surfaces | es_ES |
dc.subject.other | Rational parametrization | es_ES |
dc.subject.other | Ultraquadrics | es_ES |
dc.title | Reparametrizing Swung Surfaces over the Reals | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | http://dx.doi.org/10.1007/s00200-014-0215-6 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s00200-014-0215-6 | |
dc.type.version | submittedVersion | es_ES |