Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorLobo Hidalgo, Miguel 
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.authorShaposhnikova, Tatiana A.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2014-10-14T11:25:45Z
dc.date.available2014-10-14T11:25:45Z
dc.date.issued2013
dc.identifier.issn1311-1728
dc.identifier.issn1314-8060
dc.identifier.urihttp://hdl.handle.net/10902/5327
dc.description.abstractWe obtain estimates for convergence rates of the eigenelements (λ", u") for the Laplace operator in a domain ⊂ R3 periodically perforated along a plane γ = ∩ {x1 = 0}. The boundary conditions are of the Dirichlet type on ∂ and of the Robin type, involving a large parameter O(ε− ), on the boundary of the cavities. The small parameter ε denotes the period while the size of each cavity is O(ε ). Here we consider the most significant case where α = κ = 2.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherAcademic Publicationses_ES
dc.rights© 2013 Academic Publicationses_ES
dc.sourceInternational Journal of Applied Mathematics, 2013, 26(3), 309-320es_ES
dc.subject.otherBoundary homogenizationes_ES
dc.subject.otherPorous mediaes_ES
dc.subject.otherSpectral analysises_ES
dc.subject.otherAsymptotic analysises_ES
dc.titleOn correctors for spectral problems in the homogenization of Robin boundary conditions with very large parameterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.12732/ijam.v26i3.6
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo