Mostrar el registro sencillo

dc.contributor.authorRodríguez-Poo, Juan M. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2014-05-27T12:25:53Z
dc.date.available2014-05-27T12:25:53Z
dc.date.issued1999
dc.identifier.issn0266-4666
dc.identifier.issn1469-4360
dc.identifier.urihttp://hdl.handle.net/10902/4700
dc.description.abstractWe use smoothing splines to introduce prior information in nonparametric models. The type of information we consider is based on the belief that the regression curve is similar in shape to a parametric model. The resulting estimator is a convex sum of a fit to data and the parametric model, and it can be seen as shrinkage of the smoothing spline toward the parametric model. We analyze its rates of convergence and we provide some asymptotic distribution theory. Because the asymptotic distribution is intractable, we propose to carry out inference with the estimator by using the method proposed by Politis and Romano (1994, AnnalsofStatistics 22, 2031–2050). We also propose a data-driven technique to compute the smoothing parameters that provides asymptotically optimal estimates. Finally, we apply our results to the estimation of a model of investment behavior of the U.S. telephone industry and we present some Monte Carlo results.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherCambridge University Presses_ES
dc.rights© Cambridge University Presses_ES
dc.sourceEconometric Theory, 1999, 15(1), 114-138es_ES
dc.titleConstrained smoothing splineses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://journals.cambridge.org/action/displayFulltext?type=1&pdftype=1&fid=35140&jid=ECT&volumeId=15&issueId=01&aid=35139es_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo