• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enabling non-parametric strong lensing models to derive reliable cluster mass distributions – WSLAP+

    Ver/Abrir
    Enabling non-parametric ... (997.1Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/4533
    DOI: 10.1093/mnras/stt2076
    ISSN: 0035-8711
    ISSN: 1365-2966
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Sendra, Irene; Diego Rodríguez, José MaríaAutoridad Unican; Broadhurst, Tom; Lazkoz, Ruth
    Fecha
    2014-01
    Derechos
    © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
    Publicado en
    Monthly Notices of the Royal Astronomical Society, vol. 437, iss.3, Pp.2642-2651 (2014)
    Editorial
    Oxford University Press
    Royal Astronomical Society
    Disponible después de
    2014-07
    Enlace a la publicación
    http://dx.doi.org/10.1093/mnras/stt2076
    Palabras clave
    Methods: data analysis
    Galaxies: clusters: general
    Dark matter
    Resumen/Abstract
    In the strong lensing regime, non-parametric models struggle to achieve sufficient angular resolution for a meaningful derivation of the central cluster mass distribution. Cluster members perturb lensed images and generate additional images, requiring high-resolution modelling. In practice, the required resolution for a fully non-parametric mass map is not achievable because the separation between lensed images is several times larger than the deflection angles by member galaxies. Here we bypass this limitation by incorporating a simple physical prior for member galaxies, using their observed positions and their luminosity scaled masses. This high-frequency contribution is added to a relatively coarse Gaussian pixel grid used to model the more smoothly varying cluster mass distribution, extending our established wslap code (Diego et al.). We test this new code (wslap+) with an empirical simulation based on A1689, using all the pixels belonging to multiply lensed images and the observed member galaxies. Dealing with the cluster members this way leads to stable convergent solutions, without resorting to regularization, reproducing well smooth input cluster distributions and substructures. We highlight the ability of this method to recover ‘dark’ subcomponents and other differences between the distributions of cluster mass and member galaxies. Such anomalies can provide clues to the nature of invisible dark matter, but are difficult to discover using parametrized models where substructures are modelled on the basis of the visible data. With our increased resolution and stability, we show that non-parametric models can be made sufficiently precise to locate multiply lensed systems, thereby achieving fully self-consistent solutions without reliance on input systems from less objective means.
    Colecciones a las que pertenece
    • D52 Artículos [1337]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España