Mostrar el registro sencillo

dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2014-03-13T18:27:22Z
dc.date.available2014-03-13T18:27:22Z
dc.date.issued2014-01-16
dc.identifier.issn1024-123X
dc.identifier.issn1563-5147
dc.identifier.issn1026-7077
dc.identifier.otherTIN2012-30768es_ES
dc.identifier.urihttp://hdl.handle.net/10902/4412
dc.description.abstractABSTRACT. This paper introduces a new hybrid functional-neural approach for surface reconstruction. Our approach is based on the combination of two powerful artificial intelligence paradigms: on one hand, we apply the popular Kohonen neural network to address the data parameterization problem. On the other hand, we introduce a new functional network, called NURBS functional network, whose topology is aimed at reproducing faithfully the functional structure of the NURBS surfaces. These neural and functional networks are applied in an iterative fashion for further surface refinement. The hybridization of these two networks provides us with a powerful computational approach to obtain a NURBS fitting surface to a set of irregularly sampled noisy data points within a prescribed error threshold. The method has been applied to two illustrative examples. The experimental results confirm the good performance of our approach.es_ES
dc.description.sponsorshipThis research has been kindly supported by the Computer Science National Program of the Spanish Ministry of Economy and Competitiveness, Project ref. no. TIN2012-30768, Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherHindawi Publishing Corporationes_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.sourceMathematical Problems in Engineering Volume 2014, Article ID 351648, 13 pageses_ES
dc.titleHybrid Functional-Neural Approach for Surface Reconstructiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1155/2014/351648
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España