Comparison of two PI methods applied to FDI on ships dynamics
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2005-12Derechos
© SEECMAR
Publicado en
Journal of Maritime Research, 2005, 2(3), 21-40
Editorial
Universidad de Cantabria, Escuela Técnica Superior de Náutica / Sociedad Española de Estudios Científicos Marinos (SEECMAR)
Enlace a la publicación
Palabras clave
Backpropagation
Conjugate gradient
Parameter identification
Fault detection
Frequency response
Harmonic balance
Neural Networks
Resumen/Abstract
Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on fault detection and isolation (FDI) tasks. This research is centred on frequency techniques applied to identity ship´s model parameters (PI) including non-structured or partially known structured models using backpropagation neural networks as functional approximators. The results of the comparison of two strategies based in frequency techniques are presented. Such frequency techniques are:
Mapping the frequency response associated to system parameters when a closed loop controlled ship is excited by the well-known harmonic balance tests (HBT).
Mapping the frequency response associated to system parameters when closed loop controlled ship is excited by a group of sinusoidal inputs added to the manipulated variable (CLFRT).
With achieved frequency response mappings, system parameters are associated by means of functional approximation techniques. In this case, Feedforward neural networks trained with backpropagation conjugate gradient algorithm are massively use. Finally, PI results are used in FDI tasks, where nominal plant parameters are matched against on-line estimated parameters on a parity space approach
Colecciones a las que pertenece
- D50 Artículos [312]