• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of neural networks for the identification of new z≥ 3.6 QSOs from FIRST–SDSS DR5

    Ver/Abrir
    Use of neural.pdf (1.909Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/4145
    DOI: 10.1111/j.1365-2966.2008.13896.x
    ISSN: 1365-2966
    ISSN: 0035-8711
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Carballo Fidalgo, RuthAutoridad Unican; González Serrano, José IgnacioAutoridad Unican; Benn, Chris R.; Jiménez Luján, Florencia
    Fecha
    2008-11
    Derechos
    © 2008 The Authors. Journal compilation © 2008 RAS
    Publicado en
    Monthly Notices of the Royal Astronomical Society, 2008, 391(1), 369–382
    Editorial
    Royal Astronomical Society
    Enlace a la publicación
    http://dx.doi.org/10.1111/j.1365-2966.2008.13896.x
    Palabras clave
    Methods: data analysis
    Surveys
    Galaxies: high-redshift
    Quasars: general
    Early Universe
    Radio continuum: galaxies
    Resumen/Abstract
    We aim to obtain a complete sample of redshift z≥ 3.6 radio quasi-stellar objects (QSOs) from the Faint Images of the Radio Sky at Twenty cm survey (FIRST) sources (S1.4 GHz > 1 mJy) having star-like counterparts in the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) photometric survey (rAB≤ 20.2). Our starting sample of 8665 FIRST–DR5 pairs includes 4250 objects with spectra in DR5, 52 of these being z≥ 3.6 QSOs. We found that simple supervised neural networks, trained on the sources with DR5 spectra, and using optical photometry and radio data, are very effective for identifying high-z QSOs in a sample without spectra. For the sources with DR5 spectra the technique yields a completeness (fraction of actual high-z QSOs classified as such by the neural network) of 96 per cent, and an efficiency (fraction of objects selected by the neural network as high-z QSOs that actually are high-z QSOs) of 62 per cent. Applying the trained networks to the 4415 sources without DR5 spectra we found 58 z≥ 3.6 QSO candidates. We obtained spectra of 27 of them, and 17 are confirmed as high-z QSOs. Spectra of 13 additional candidates from the literature and from SDSS Data Release 6 (DR6) revealed seven more z≥ 3.6 QSOs, giving an overall efficiency of 60 per cent (24/40). None of the non-candidates with spectra from NASA/IPAC Extragalactic Database (NED) or DR6 is a z≥ 3.6 QSO, consistently with a high completeness. The initial sample of high-z QSOs is increased from 52 to 76 sources, i.e. by a factor of 1.46. From the new identifications and candidates we estimate an incompleteness of SDSS for the spectroscopic classification of FIRST 3.6 ≤z≤ 4.6 QSOs of 15 per cent for r≤ 20.2.
    Colecciones a las que pertenece
    • D15 Artículos [846]
    • D20 Artículos [468]
    • D52 Artículos [1337]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España