Mostrar el registro sencillo

dc.contributor.authorMankovich, Nathan
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorCamps Valls, Gustau
dc.contributor.authorBirdal, Tolga
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-03T15:40:45Z
dc.date.available2026-02-03T15:40:45Z
dc.date.issued2025
dc.identifier.isbn979-8-3315-4364-8
dc.identifier.otherPID2022-137099NB-C43es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39114
dc.description.abstractFlag manifolds encode nested sequences of subspaces and serve as powerful structures for various computer vision and machine learning applications. Despite their utility in tasks such as dimensionality reduction, motion averaging, and subspace clustering, current applications are often restricted to extracting flags using common matrix decomposition methods like the singular value decomposition. Here, we address the need for a general algorithm to factorize and work with hierarchical datasets. In particular, we propose a novel, flag-based method that decomposes arbitrary hierarchical real-valued data into a hierarchy-preserving flag representation in Stiefel coordinates. Our work harnesses the potential of flag manifolds in applications including denoising, clustering, and few-shot learning.es_ES
dc.description.sponsorshipN. Mankovich thanks Homer Durand, Gherardo Varando, Claudio Verdun, and Bernardo Freitas Paulo da Costa for enlightening conversations on flag manifolds and their applications. N. Mankovich and G. Camps-Valls acknowledge support from the project ”Artificial Intelligence for complex systems: Brain, Earth, Climate, Society” funded by the Department of Innovation, Universities, Science, and Digital Society, code: CIPROM/2021/56. This work was also supported by the ELIAS project (HORIZON-CL4-2022-HUMAN-02- 02, Grant No. 101120237), the THINKINGEARTH project (HORIZON-EUSPA-2022-SPACE-02-55, Grant No. 101130544), and the USMILE project (ERC-SyG2019, Grant No. 855187). T. Birdal acknowledges support from the Engineering and Physical Sciences Research Council [grant EP/X011364/1]. T. Birdal was supported by a UKRI Future Leaders Fellowship [grant number MR/Y018818/1] as well as a Royal Society Research Grant RG/R1/241402. The work of I. Santamaria was partly supported under grant PID2022-137099NB-C43 (MADDIE) funded by MICIU/AEI /10.13039/501100011033 and FEDER, UE.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2025, 18738-18748es_ES
dc.titleA flag decomposition for hierarchical datasetses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/CVPR52734.2025.01746es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C43/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/
dc.identifier.DOI10.1109/CVPR52734.2025.01746
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo