• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A flag decomposition for hierarchical datasets

    Ver/Abrir
    FlagDecompositionHie ... (2.368Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/39114
    DOI: 10.1109/CVPR52734.2025.01746
    ISBN: 979-8-3315-4364-8
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Mankovich, Nathan; Santamaría Caballero, Luis IgnacioAutoridad Unican; Camps Valls, Gustau; Birdal, Tolga
    Fecha
    2025
    Derechos
    © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2025, 18738-18748
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/CVPR52734.2025.01746
    Resumen/Abstract
    Flag manifolds encode nested sequences of subspaces and serve as powerful structures for various computer vision and machine learning applications. Despite their utility in tasks such as dimensionality reduction, motion averaging, and subspace clustering, current applications are often restricted to extracting flags using common matrix decomposition methods like the singular value decomposition. Here, we address the need for a general algorithm to factorize and work with hierarchical datasets. In particular, we propose a novel, flag-based method that decomposes arbitrary hierarchical real-valued data into a hierarchy-preserving flag representation in Stiefel coordinates. Our work harnesses the potential of flag manifolds in applications including denoising, clustering, and few-shot learning.
    Colecciones a las que pertenece
    • D12 Proyectos de Investigación [552]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España