Mostrar el registro sencillo

dc.contributor.authorPérez Arriaga, Jesús 
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorPagès Zamora, Alba
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-03T15:28:20Z
dc.date.available2026-02-03T15:28:20Z
dc.date.issued2026-02
dc.identifier.issn0165-1684
dc.identifier.issn1872-7557
dc.identifier.otherPID2022-137099NB-C41es_ES
dc.identifier.otherPID2022-137099NB-C43es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39109
dc.description.abstractThis work presents a general framework for blindly estimating the sensor parameters of decision-fusion systems over wireless sensor networks (WSNs). The sensors report their binary decisions to a fusion center (FC) through parallel binary symmetric channels. Then, the FC makes the final decision by combining the noisy sensor decisions according to a certain fusion rule. We present an algorithm for the FC to blindly estimate the sensor parameters from the noisy sensor decisions received after a number of sensing periods. The algorithm covers a wide variety of situations that may arise in WSNs. For example, the algorithm is applicable when the FC knows in advance some of the parameters of some sensors, when it knows the true hypothesis for a subset of sensing periods, or when only a subset of sensors communicates their decisions in each sensing period. Based on the estimates of the system parameters, optimal channel-aware fusion rules are derived considering the minimum Bayes risk criterion. Simulation results show that, after sufficient sensing periods, the estimates of the WSN parameters are accurate enough for the fusion rule to exhibit near-optimal detection performance.es_ES
dc.description.sponsorshipThis work has been funded by MCIN/AEI/10.13039/501100011033 under grants PID2022-137099NB-C41 and PID2022-137099NB-C43.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSignal Processing, 2026, 239, 110238es_ES
dc.subject.otherDecision fusion rulees_ES
dc.subject.otherDistributed detection and estimationes_ES
dc.subject.otherEM algorithmes_ES
dc.subject.otherProbabilistic mixture modelses_ES
dc.subject.otherWireless sensor networkses_ES
dc.titleBlind learning of the optimal fusion rule in wireless sensor networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sigpro.2025.110238es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C41/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C43/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/es_ES
dc.identifier.DOI10.1016/j.sigpro.2025.110238
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International