Mostrar el registro sencillo

dc.contributor.authorGarcía Vicente, Clara
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorVaquerizo Villar, Fernando
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-03T15:24:26Z
dc.date.available2026-02-03T15:24:26Z
dc.date.issued2025-02
dc.identifier.issn2168-2208
dc.identifier.issn2168-2194
dc.identifier.otherPID2020-115468RB-I00es_ES
dc.identifier.otherCPP2022-009735es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39108
dc.description.abstractObstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagnosis. To simplify OSA diagnosis, deep learning (DL) algorithms have been developed using cardiac signals, but they often lack interpretability. Our study introduces a novel interpretable DL approach (SleepECG-Net) for directly estimating OSA severity in at-risk children. A combination of convolutional and recurrent neural networks (CNN-RNN) was trained on overnight electrocardiogram (ECG) signals. Gradient-weighted Class Activation Mapping (Grad-CAM), an eXplainable Artificial Intelligence (XAI) algorithm, was applied to explain model decisions and extract ECG patterns relevant to pediatric OSA. Accordingly, ECG signals from the semi-public Childhood Adenotonsillectomy Trial (CHAT, n = 1610) and Cleveland Family Study (CFS,n = 64), and the private University of Chicago (UofC, n = 981) databases were used. OSA diagnostic performance reached 4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, and CFS, respectively. The proposal demonstrated improved performance with increased severity along with heightened cardiovascular risk. XAI findings highlighted the detection of established ECG features linked to OSA, such as bradycardia-tachycardia events and delayed ECG patterns during apnea/hypopnea occurrences, focusing on clusters of events. Furthermore, Grad-CAM heatmaps identified potential ECG patterns indicating cardiovascular risk, such as P, T, and U waves, QT intervals, and QRS complex variations. Hence, SleepECG-Net approach may improve pediatric OSA diagnosis by also offering cardiac risk factor information, thereby increasing clinician confidence in automated systems, and promoting their effective adoption in clinical practice.es_ES
dc.description.sponsorshipThis work is part of the projects PID2020-115468RB-I00 and CPP2022- 009735, funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. This research was also co-funded by the European Union through the Interreg VI-A Spain-Portugal Program (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E), and by “CIBER-Consorcio Centro de Investigación Biomédica en Red” (CB19/01/00012) through “Instituto de Salud Carlos III”, co-funded with European Regional Development Fund, as well as under the project TinyHeart from 2022 Early Stage call. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The Cleveland Family Study (CFS) was supported by grants from the National Institutes of Health (HL46380, M01 RR00080-39, T32-HL07567, RO1- 46380). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002).es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Journal of Biomedical and Health Informatics, 2025, 29(2), 1021-1034es_ES
dc.subject.otherPediatric obstructive sleep apnea (OSA)es_ES
dc.subject.otherDeep learning (DL)es_ES
dc.subject.othereXplainable artificial intelligence (XAI)es_ES
dc.subject.otherElectrocardiogram (ECG)es_ES
dc.subject.otherGradient-weighted class activation mapping (Grad-CAM)es_ES
dc.titleSleepECG-Net: explainable deep learning approach with ECG for pediatric sleep apnea diagnosises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/JBHI.2024.3495975es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115468RB-I00/ES/DISEÑO DE MODELOS PREDICTIVOS AUTOMATICOS INTERPRETABLES EN LA APNEA DEL SUEÑO PEDIATRICA. APLICACION DE TECNICAS DE DEEP LEARNING E INTERPRETACION DE INTELIGENCIA ARTIFICIAL /es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/CPP2022-009735/ES/Modelo automático de predicción temprana de adherencia al tratamiento en pacientes con apnea obstructiva del sueño (TreatNet)/es_ES
dc.identifier.DOI10.1109/JBHI.2024.3495975
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo