• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SleepECG-Net: explainable deep learning approach with ECG for pediatric sleep apnea diagnosis

    Ver/Abrir
    SleepECGNetExplainab ... (2.248Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/39108
    DOI: 10.1109/JBHI.2024.3495975
    ISSN: 2168-2208
    ISSN: 2168-2194
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Vicente, Clara; Gutiérrez Tobal, Gonzalo César; Vaquerizo Villar, Fernando; Martín Montero, AdriánAutoridad Unican; Gozal, David; Hornero Sánchez, Roberto
    Fecha
    2025-02
    Derechos
    © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Journal of Biomedical and Health Informatics, 2025, 29(2), 1021-1034
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/JBHI.2024.3495975
    Palabras clave
    Pediatric obstructive sleep apnea (OSA)
    Deep learning (DL)
    eXplainable artificial intelligence (XAI)
    Electrocardiogram (ECG)
    Gradient-weighted class activation mapping (Grad-CAM)
    Resumen/Abstract
    Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagnosis. To simplify OSA diagnosis, deep learning (DL) algorithms have been developed using cardiac signals, but they often lack interpretability. Our study introduces a novel interpretable DL approach (SleepECG-Net) for directly estimating OSA severity in at-risk children. A combination of convolutional and recurrent neural networks (CNN-RNN) was trained on overnight electrocardiogram (ECG) signals. Gradient-weighted Class Activation Mapping (Grad-CAM), an eXplainable Artificial Intelligence (XAI) algorithm, was applied to explain model decisions and extract ECG patterns relevant to pediatric OSA. Accordingly, ECG signals from the semi-public Childhood Adenotonsillectomy Trial (CHAT, n = 1610) and Cleveland Family Study (CFS,n = 64), and the private University of Chicago (UofC, n = 981) databases were used. OSA diagnostic performance reached 4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, and CFS, respectively. The proposal demonstrated improved performance with increased severity along with heightened cardiovascular risk. XAI findings highlighted the detection of established ECG features linked to OSA, such as bradycardia-tachycardia events and delayed ECG patterns during apnea/hypopnea occurrences, focusing on clusters of events. Furthermore, Grad-CAM heatmaps identified potential ECG patterns indicating cardiovascular risk, such as P, T, and U waves, QT intervals, and QRS complex variations. Hence, SleepECG-Net approach may improve pediatric OSA diagnosis by also offering cardiac risk factor information, thereby increasing clinician confidence in automated systems, and promoting their effective adoption in clinical practice.
    Colecciones a las que pertenece
    • D50 Proyectos de Investigación [455]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España