Mostrar el registro sencillo

dc.contributor.authorPontón Lobete, María Isabel 
dc.contributor.authorSancho Lucio, Sergio Miguel 
dc.contributor.authorSuárez Rodríguez, Almudena 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-03T13:00:28Z
dc.date.available2026-02-03T13:00:28Z
dc.date.issued2025-11
dc.identifier.issn0018-9480
dc.identifier.issn1557-9670
dc.identifier.otherPID2020-116569RB-C31es_ES
dc.identifier.otherPID2023-147653OB-C31es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39107
dc.description.abstractWe propose a new type of oscillator sensor based on a self-modulated oscillator, exhibiting two concurrent oscillations at high and low frequency. To ensure a low phase noise, a high-frequency design is based on a stepped-impedance resonator, over which the material under test (MUT) is placed. The low-frequency oscillation is achieved through the introduction of feedback elements in the bias circuitry, by following a systematic procedure based on the use of stability circles and a rigorous two-stage stability analysis. The low-frequency oscillation modulates the high-frequency one and its harmonic components, generating multiple spectral lines around each of these components. For the first time to our knowledge, we demonstrate the simultaneous influence of the MUT on two concurrent oscillations, coupled through the nonlinear effects of the active device, as explained using an envelope-domain formulation. Thus, the sensing is based on the central frequency, frequency spacing, and amplitude of the spectral lines, enhancing both sensitivity and reliability. This multivariable approach enables robust multipoint detection and is expected to offer higher sensitivity compared with traditional methods that rely on a single oscillation frequency and amplitude. We present a calibration procedure, based on these measurands, to determine the real and imaginary parts of the MUT dielectric constant. The circuit has been fabricated and experimentally characterized, yielding very good results.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) under Grant PID2020-116569RB-C31 and Grant PID2023-147653OB-C31.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Transactions on Microwave Theory and Techniques, 2025, 73(11), 8371-8382es_ES
dc.subject.otherConcurrent oscillationses_ES
dc.subject.otherEnvelope transientes_ES
dc.subject.otherSensores_ES
dc.titleMicrowave sensor based on a self-modulated oscillatores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TMTT.2025.3595262es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116569RB-C31/ES/ANALISIS Y DISEÑO DE NUEVAS TOPOLOGIAS DE OSCILADORES PARA SISTEMAS RADAR Y DE SENSORES DE BAJO COSTO /es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-147653OB-C31/ES/ANALISIS Y DISEÑO OPTIMIZADO DE SISTEMAS COMPACTOS BASADOS EN OSCILADORES UNS SISTEMA MULTIESTRATEGICO DE GEOLOCALIZACION, SENSADO E INTERCAMBIO DE INFORMACION./es_ES
dc.identifier.DOI10.1109/TMTT.2025.3595262
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International