Mostrar el registro sencillo

dc.contributor.authorDominguez Esteban, Marioes_ES
dc.contributor.authorFernandez Guzman, Esteres_ES
dc.contributor.authorRamos Barselo, Enrique Alejandro es_ES
dc.contributor.authorHerrero Blanco, Ernestoes_ES
dc.contributor.authorZubillaga Guerrero, Sergioes_ES
dc.contributor.authorBallestero Diego, Roberto es_ES
dc.contributor.authorFernández Flórez, Alejandroes_ES
dc.contributor.authorGómez Román, José Javier es_ES
dc.contributor.authorGarcia Herrero, Jaimees_ES
dc.contributor.authorSanchez Gil, Marinaes_ES
dc.contributor.authorVelilla Diez, Guillermoes_ES
dc.contributor.authorCampos Juanatey, Felix es_ES
dc.contributor.authorGarcía Unzueta, María Teresa es_ES
dc.contributor.authorGutierrez Baños, Jose Luises_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-03T10:55:32Z
dc.date.available2026-02-03T10:55:32Z
dc.date.issued2025es_ES
dc.identifier.issn2688-4526es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39104
dc.description.abstractBackground: The integration of blood-based biomarkers and multiparametric magnetic resonance imaging (mpMRI) has been proposed to improve prostate cancer (PCa) diagnosis. However, few validated models combine both tools to support risk-adapted clinical decision-making. Objective: The study's aim is to evaluate and internally validate a multivariable model integrating clinical, analytical and imaging parameters-including the Prostate Health Index (PHI) and mpMRI-for predicting clinically significant prostate cancer (csPCa) in biopsy-naïve men. Design setting and participants: This prospective observational study included 183 biopsy-naïve men aged 50-75 years with PSA levels of 4-10 ng/mL and/or abnormal digital rectal examination. All patients underwent PHI testing, and 47.5% received prebiopsy mpMRI. All underwent systematic biopsy; targeted cognitive fusion biopsy was performed for PIRADS ? 3 lesions. Outcome measurements and statistical analysis: A multivariable logistic regression model was constructed using PHI, PSA density, PSA free/total ratio, PIRADS score and age. The model was internally validated with bootstrap resampling and converted into a clinical nomogram. Diagnostic accuracy (AUC, sensitivity, specificity, NPV and PPV) was assessed and compared with simplified strategies using PHI or PIRADS alone, as well as a sequential approach (PHI ? PIRADS). Results and limitations: The model achieved an AUC of 0.841 (95% CI 0.76-0.91), with 100% sensitivity and 66.7% specificity for csPCa in the mpMRI cohort at the optimal 17% risk threshold (65.5 points). It safely avoided 49.4% of biopsies without missing any csPCa cases. Simpler strategies using PHI or PIRADS alone showed lower efficiency, particularly in balancing sensitivity and biopsy reduction. As an additional analysis, the PHI-mpMRI nomogram by Siddiqui et al. (2023) was externally validated in our cohort, confirming robust diagnostic accuracy (AUC 0.89, 95% CI 0.82-0.95). Limitations include the modest size of the mpMRI cohort and the historical nature of recruitment (2014-2018), although PHI and mpMRI remain standard in contemporary practice. Conclusions: This model accurately predicts csPCa and outperforms individual tools such as PHI or PIRADS alone. Its application may improve diagnostic efficiency and reduce unnecessary procedures.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley & Sons Ltdes_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceBJUI compass, 2025, 6(12), e70101es_ES
dc.subject.otherClinically significantes_ES
dc.titleMultivariable model integrating PHI and mpMRI for detecting csPCa in biopsy-naïve menes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/bco2.70101es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/bco2.70101es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International