Mostrar el registro sencillo

dc.contributor.authorGutiérrez Tobal, Gonzalo César.
dc.contributor.authorGomez Pilar, Javier
dc.contributor.authorKheirandish Gozal, Leila
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorPoza Crespo, Jesús
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorCampo Matías, Félix del
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-02T16:06:24Z
dc.date.available2026-02-02T16:06:24Z
dc.date.issued2021-11-03
dc.identifier.issn1662-453X
dc.identifier.issn1662-4548
dc.identifier.otherRTC-2017-6516-1es_ES
dc.identifier.otherPGC2018-098214-A-I00es_ES
dc.identifier.otherDPI2017-84280-Res_ES
dc.identifier.urihttps://hdl.handle.net/10902/39081
dc.description.abstractPediatric obstructive sleep apnea (OSA) is a prevalent disorder that disrupts sleep and is associated with neurocognitive and behavioral negative consequences, potentially hampering the development of children for years. However, its relationships with sleep electroencephalogram (EEG) have been scarcely investigated. Here, our main objective was to characterize the overnight EEG of OSA-affected children and its putative relationships with polysomnographic measures and cognitive functions. A two-step analysis involving 294 children (176 controls, 57% males, age range: 5–9 years) was conducted for this purpose. First, the activity and irregularity of overnight EEG spectrum were characterized in the typical frequency bands by means of relative spectral power and spectral entropy, respectively: δ1 (0.1–2 Hz), δ2 (2–4 Hz), θ (4–8 Hz), α (8–13 Hz), σ (10–16 Hz), β1 (13–19 Hz), β2 (19–30 Hz), and γ (30–70 Hz). Then, a correlation network analysis was conducted to evaluate relationships between them, six polysomnography variables (apnea–hypopnea index, respiratory arousal index, spontaneous arousal index, overnight minimum blood oxygen saturation, wake time after sleep onset, and sleep efficiency), and six cognitive scores (differential ability scales, Peabody picture vocabulary test, expressive vocabulary test, design copying, phonological processing, and tower test). We found that as the severity of the disease increases, OSA broadly affects sleep EEG to the point that the information from the different frequency bands becomes more similar, regardless of activity or irregularity. EEG activity and irregularity information from the most severely affected children were significantly associated with polysomnographic variables, which were coherent with both micro and macro sleep disruptions. We hypothesize that the EEG changes caused by OSA could be related to the occurrence of respiratory-related arousals, as well as thalamic inhibition in the slow oscillation generation due to increases in arousal levels aimed at recovery from respiratory events. Furthermore, relationships between sleep EEG and cognitive scores emerged regarding language, visual–spatial processing, and executive function with pronounced associations found with EEG irregularity in δ1 (Peabody picture vocabulary test and expressive vocabulary test maximum absolute correlations 0.61 and 0.54) and β2 (phonological processing, 0.74; design copying, 0.65; and Tow 0.52). Our results show that overnight EEG informs both sleep alterations and cognitive effects of pediatric OSA. Moreover, EEG irregularity provides new information that complements and expands the classic EEG activity analysis. These findings lay the foundation for the use of sleep EEG to assess cognitive changes in pediatric OSA.es_ES
dc.description.sponsorshipThis work was supported by the “Ministerio de Ciencia, Innovación y Universidades” and the “European Regional Development Fund (FEDER)” under projects DPI2017-84280-R, RTC-2017-6516-1, and PGC2018-098214-A-I00, by the “European Commission” and “FEDER” under project “Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (“Cooperation Programme Interreg V-A Spain–Portugal POCTEP 2014–2020”), and by CIBER-BBN (ISCIII), cofunded with FEDER funds. DG and LK-G are supported by the United States National Institutes of Health grants HL130984 (LK-G) and HL140548 (DG).es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Media S.A.es_ES
dc.rights© The authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceFrontiers in Neuroscience, 2021, 15, 644697es_ES
dc.subject.otherSleep apneaes_ES
dc.subject.otherPediatricses_ES
dc.subject.otherElectroencephalographyes_ES
dc.subject.otherCognitiones_ES
dc.subject.otherCorrelation networkses_ES
dc.titlePediatric sleep apnea: the overnight electroencephalogram as a phenotypic biomarkeres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3389/fnins.2021.644697es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6516-1/ES/Estimación automática de la capacidad cognitiva en niños con apnea del sueño. Diseño, desarrollo y validación de un test de deterioro cognitivo basado en el análisis del electroencefalograma nocturno adquirido en el domicilio (COGNITION)/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-098214-A-I00/ES/SIMULACION COMPUTACIONAL DE LOS MECANISMOS NEURODEGENERATIVOS EN LA ENFERMEDAD DE ALZHEIMER: DESCIFRANDO LAS ALTERACIONES DE LA RED NEURONAL/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84280-R/ES/SIMPLIFICACION DEL DIAGNOSTICO DE LA APNEA DEL SUEÑO INFANTIL MEDIANTE NUEVAS TECNICAS DE PROCESADO DE SEÑALES CARDIORRESPIRATORIAS/es_ES
dc.identifier.DOI10.3389/fnins.2021.644697
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Excepto si se señala otra cosa, la licencia del ítem se describe como © The authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.