| dc.contributor.author | Martín Montero, Adrián | |
| dc.contributor.author | GutiérrezTobal, Gonzalo César | |
| dc.contributor.author | Gozal, David | |
| dc.contributor.author | Barroso García, Verónica | |
| dc.contributor.author | Álvarez González, Daniel | |
| dc.contributor.author | Campo Matías, Félix del | |
| dc.contributor.author | Kheirandish Gozal, Leila | |
| dc.contributor.author | Hornero Sánchez, Roberto | |
| dc.contributor.other | Universidad de Cantabria | es_ES |
| dc.date.accessioned | 2026-02-02T15:40:56Z | |
| dc.date.available | 2026-02-02T15:40:56Z | |
| dc.date.issued | 2021-08 | |
| dc.identifier.issn | 1099-4300 | |
| dc.identifier.other | DPI2017-84280-R | es_ES |
| dc.identifier.other | RTC-2017-6516-1 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10902/39078 | |
| dc.description.abstract | Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate variability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional spectral analysis. However, bispectral analysis provides both linearity and stationarity information and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic purposes in two large pediatric databases (0-13 years). The first database (training set) was composed of 981 overnight ECG recordings obtained during polysomnography. The second database (test set) was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0-0.04 Hz; low frequency: 0.04-0.15 Hz; and high frequency: 0.15-0.40 Hz), as well as three OSA-specific frequency ranges obtained in recent studies (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz; BWRes: a subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The fast correlation-based filter was applied to the features obtained from the classic and OSA-specific regions, showing complementary information regarding OSA alterations in HRV. This information was then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP models showed high and similar accuracy (Acc) and areas under the receiver operating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispectral analysis on HRV to characterize and diagnose pediatric OSA. | es_ES |
| dc.description.sponsorship | This work was supported by ‘Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación’ and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R and RTC-2017-6516-1, by ‘European Commission’ and ‘FEDER’ under project ‘Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo de migraña crónica y episódica en mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020′) and by ‘CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)’ through ‘Instituto de Salud Carlos III’ co-funded with FEDER funds, as well as under the project SleepyHeart from 2020 valorization call. A.M.-M. is in receipt of an ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the Ministerio de Ciencia, Innovación y Universidades (PRE2018-085219). V.B.-G. is in receipt of an ‘Ayuda para financiar la contratación predoctoral de personal investigador’ grant from ‘Consejería de Educación de la Junta de Castilla y León’ cofunded by ‘European Social Fund’. D.A. is supported by a ‘Ramón y Cajal’ grant (RYC2019-028566-I) by the ‘Ministerio de Ciencia e Innovación–Agencia Estatal de Investigación’ co-funded by ESF. L.K.-G. and D.G. are supported by National Institutes of Health (NIH) grant HL130984, the Leda J. Sears Foundation and by a Tier 2 grant from the University of Missouri. D.G. is also supported by NIH grants HL140548, and AG061824. | es_ES |
| dc.format.extent | 30 p. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.source | Entropy, 2021, 23(8), 1016 - (ERRATUM), 2021, 23(11), 1375 | es_ES |
| dc.subject.other | Pediatrics | es_ES |
| dc.subject.other | Obstructive sleep apnea | es_ES |
| dc.subject.other | Heart rate variability | es_ES |
| dc.subject.other | Bispectral analysis | es_ES |
| dc.subject.other | Multi-layer perceptron neural network | es_ES |
| dc.title | Bispectral analysis of heart rate variability to characterize and help diagnose pediatric sleep apnea | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.rights.accessRights | openAccess | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84280-R/ES/SIMPLIFICACION DEL DIAGNOSTICO DE LA APNEA DEL SUEÑO INFANTIL MEDIANTE NUEVAS TECNICAS DE PROCESADO DE SEÑALES CARDIORRESPIRATORIAS/ | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6516-1/ES/Estimación automática de la capacidad cognitiva en niños con apnea del sueño. Diseño, desarrollo y validación de un test de deterioro cognitivo basado en el análisis del electroencefalograma nocturno adquirido en el domicilio (COGNITION)/ | es_ES |
| dc.identifier.DOI | 10.3390/e23081016 | |
| dc.type.version | publishedVersion | es_ES |