Mostrar el registro sencillo

dc.contributor.authorJiménez García, Jorge
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorGarcía Gadañón, María
dc.contributor.authorKheirandish Gozal, Leila
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorCampo Matías, Félix del
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-02T15:34:11Z
dc.date.available2026-02-02T15:34:11Z
dc.date.issued2020-06
dc.identifier.issn1099-4300
dc.identifier.otherDPI2017-84280-Res_ES
dc.identifier.otherRTC-2017-6516-1es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39077
dc.description.abstractThe reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens's kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea-hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.es_ES
dc.description.sponsorshipThis work was supported by the ‘Ministerio de Ciencia, Innovación y Universidades’ and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R and RTC-2017-6516-1, by ‘European Commission’ and ‘FEDER’ under projects ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ and ‘Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo de migraña crónica y episódica en mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–20200), and by ‘CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)’ through ‘Instituto de Salud Carlos III’ co-funded with FEDER funds. J.J.-G. was in receipt of a ‘Ayudas para la contratación de personal técnico de apoyo a la investigación’ grant from the ’Junta de Castilla y León’ funded by the European Social Fund and Youth Employment Initiative. A.M.-M. was in receipt of a “Ayudas para contratos predoctorales para la Formación de Doctores” grant from the Ministerio de Ciencia, Innovación y Universidades (PRE2018-085219). D.G. and L.K.-G. are supported by US National Institutes of Health grants HL130984 (L.K.-G.) and HL140548 (D.G.).es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEntropy, 2020, 22(6), 670es_ES
dc.subject.otherSleep apnea–hypopnea syndromees_ES
dc.subject.otherAirflowes_ES
dc.subject.otherOximetryes_ES
dc.subject.otherAdaBoostes_ES
dc.subject.otherSpectral analysises_ES
dc.subject.otherNonlinear analysises_ES
dc.titleAssessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoostes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84280-R/ES/SIMPLIFICACION DEL DIAGNOSTICO DE LA APNEA DEL SUEÑO INFANTIL MEDIANTE NUEVAS TECNICAS DE PROCESADO DE SEÑALES CARDIORRESPIRATORIAS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6516-1/ES/Estimación automática de la capacidad cognitiva en niños con apnea del sueño. Diseño, desarrollo y validación de un test de deterioro cognitivo basado en el análisis del electroencefalograma nocturno adquirido en el domicilio (COGNITION)/es_ES
dc.identifier.DOI10.3390/e22060670
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.