Mostrar el registro sencillo

dc.contributor.authorBoullosa Falces, David
dc.contributor.authorSánchez Varela, Zaloa
dc.contributor.authorUrtaran Lavín, Egoitz
dc.contributor.authorSanz Sánchez, David 
dc.contributor.authorGarcía Gómez, Sergio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-02-02T10:55:46Z
dc.date.available2026-02-02T10:55:46Z
dc.date.issued2025
dc.identifier.issn2083-6473
dc.identifier.issn2083-6481
dc.identifier.urihttps://hdl.handle.net/10902/39067
dc.description.abstractThe competitiveness in maritime operations demands maintenance strategies that ensure high reliability and availability at minimal cost. While predictive diagnostics have shown promise in detecting deviations from optimal operating conditions, current methodologies often fail to effectively isolate and identify the contributing process variables. This study introduces an enhanced predictive diagnostic approach that integrates MYT (Mason, Young, Tracy) decomposition with traditional statistical monitoring techniques, such as Hotelling's T² control charts. By applying this methodology to the auxiliary systems of a 284-meter LNG tanker, we identified that the key variables driving process anomalies were Superheated Steam in Boiler 1 (Tn/h) and Superheated Steam in Boiler 2 (Tn/h). These findings underscore the ability of the proposed method to detect deviations before critical failures occur, providing ship operators with actionable insights to enable precise maintenance scheduling, reduce operational costs, and prevent unscheduled downtime. The demonstrated integration of MYT decomposition into predictive maintenance protocols highlights its potential to optimize monitoring accuracy and decision-making in complex naval systems.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherTransNav, Faculty of Navigation Gdynia Maritime University (Poland)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceTransnav, 2025, 19(2), 543-548es_ES
dc.titleEnhanced predictive diagnostics for naval equipment: integrating MYT decomposition for advanced process monitoringes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.12716/1001.19.02.25es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.12716/1001.19.02.25
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

http://creativecommons.org/licenses/by-nc/3.0/es/Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/3.0/es/