Mostrar el registro sencillo

dc.contributor.authorLi, Yan
dc.contributor.authorHerbón-Penabad, Miguel
dc.contributor.authorMiranda Manzanares, Marina 
dc.contributor.authorLi, Tonglu
dc.contributor.authorDelgado-Martín, Jordi
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-01-29T16:46:32Z
dc.date.issued2026
dc.identifier.issn1873-4545
dc.identifier.issn1365-1609
dc.identifier.otherPID2021-126419NB-I00es_ES
dc.identifier.otherPID2020-116138GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39019
dc.description.abstractUnderstanding mode I fracture behavior in rocks is essential for handling geomechanical problems, including tunneling, mining, and hydraulic fracturing. This study investigates the mode I fracture toughness (KIC) and specific fracture energy (Gc and Gf) in one sandstone, one limestone and two marble lithologies using the pseudo-compact tension (pCT) test. To assess the influence of the notch radius, specimens were prepared with two notch radii: 0.15 mm (thin) and 0.5 mm (thick). The key novelty lies in comparing notch radius effects across multiple lithologies while explicitly accounting for heterogeneity via ultrasonic wave velocities and micro X-ray fluorescence elemental mapping. Results show that, for the limestone and the marbles, the thick notch yields higher values of KIC, Gc, Gf. In contrast, the sandstone shows the opposite trend, with higher values for thin-notch specimens. This behavior is likely attributed to its high porosity, where stress concentration around pores can generates secondary crack tips near the blunt notch tip, that reduce the fracture toughness and energy dissipation. Across all rocks, Gf > Gc, indicating substantial dissipation by microcracking and grain-boundary processes beyond pure surface-energy creation. In addition, a thinner notch improves repeatability and reduces data dispersion, thereby mitigating heterogeneity effects on measured parameters. These findings provide practical guidance on selection of notch radius and highlight the importance of multiscale heterogeneity characterization for advancing rock mechanics research and refining fracture testing methods, thereby improving accuracy and reducing variability.es_ES
dc.description.sponsorshipThe work presented in this contribution is part of the projects “Processes affecting mode I fracture toughness: evaluation of pressure, temperature and fluid effects (P-Tenaz)” (Ref: PID2021-126419NB-I00) funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”, and “Strain energy density in rock strength at different temperatures (EnergyRock)” (Ref.: PID2020-116138GB-I00) funded by MCIN/AEI/10.13039/501100011033. Y.L. gratefully acknowledges the financial support from the China Scholarship Council (No. 202206560006).es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Sciencees_ES
dc.rights© 2026. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.sourceInternational Journal of Rock Mechanics and Mining Sciences, 2026, 197, 106352es_ES
dc.subject.otherMode I fracture toughnesses_ES
dc.subject.otherSpecific fracture energyes_ES
dc.subject.otherPseudo-compact tension (pCT) testes_ES
dc.subject.otherNotch radiuses_ES
dc.subject.otherRock heterogeneityes_ES
dc.titleExperimental assessment of mode I fracture toughness and fracture energy in four rock types using the pCT testing method with two notch radiies_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ijrmms.2025.106352es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.ijrmms.2025.106352
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2028-01-03
dc.date.embargoEndDate2028-01-03


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo