Mostrar el registro sencillo

dc.contributor.authorVaquerizo Villar, Fernando
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-01-29T15:57:24Z
dc.date.available2026-01-29T15:57:24Z
dc.date.issued2025-12-22
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.otherPID2023-148895OB-I00es_ES
dc.identifier.otherPID2020-115468RB-I00es_ES
dc.identifier.otherCPP2022-009735es_ES
dc.identifier.urihttps://hdl.handle.net/10902/39017
dc.description.abstractDeep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2) recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) patients. However, lack of interpretability and validation across patients from a wide range of ages (children, adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep, deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO2 signals. An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO2 signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with accuracies between 81.5 % and 84.5 % and Cohen's kappa values from 0.726 to 0.779. It also demonstrated greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability in PR and SpO2 amplitude, as well as changes in their spectral content across specific frequency bands (0.004-0.020 Hz, 0.020-0.100 Hz, and 0.180-0.400 Hz), for sleep stage classification. These findings indicate that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in clinical settings.es_ES
dc.description.sponsorshipThis work is part of the projects PID2023-148895OB-I00, PID2020- 115468RB-I00, and CPP2022-009735, funded by MCIN/AEI/10.13039/ 501100011033, the ‘Fondo Social Europeo Plus (FSE+)’, and the European Union “NextGenerationEU”/PRTR. This research was also co- funded by the European Union through the Interreg VI-A Spain- Portugal Program (POCTEP) 2021–2027 (0043_NET4SLEEP_2_E), and by “Consorcio Centro de Investigaci´on Biom´edica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)” (CB19/01/ 00012) through “Instituto de Salud Carlos III (ISCIII)”, co-funded with European Regional Development Fund.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Limitedes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEngineering Applications of Artificial Intelligence, 2025, 162 (Part C), 112562es_ES
dc.subject.otherAge subgroupses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherExplainable artificial intelligencees_ES
dc.subject.otherPulse oximetryes_ES
dc.subject.otherObstructive sleep apneaes_ES
dc.subject.otherSleep stageses_ES
dc.titleAn explainable deep learning approach for sleep staging in sleep apnea patients across all age subgroups from pulse oximetry signalses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.engappai.2025.112562es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.engappai.2025.112562
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International