Mostrar el registro sencillo

dc.contributor.authorUsategui-Martín, Ricardo
dc.contributor.authorMateo, Jorge
dc.contributor.authorCampillo-Sánchez, Francisco
dc.contributor.authorTorres, Ana M.
dc.contributor.authorRuiz de Temiño, Ángela
dc.contributor.authorMartín Millán, Marta 
dc.contributor.authorHernández Hernández, José Luis 
dc.contributor.authorGil, Judith
dc.contributor.authorPérez-Castrillón, José
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-01-22T11:08:07Z
dc.date.available2026-01-22T11:08:07Z
dc.date.issued2025
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10902/38852
dc.description.abstractThe main objective of osteoporosis management is to prevent osteoporotic fractures. Using machine learning methods, new risk variables can be identified to enhance the ability to identify women with osteoporosis who are at an increased risk of bone fracture. A multicenter study using machine learning-based methods was conducted in two independent cohorts of postmenopausal women (HURH and Camargo Cohorts), with clinical follow-up periods ranging from 8 to 10 years. The prediction models were developed in the HURH Cohort and validated using the Camargo Cohort, an independent external group of postmenopausal women. This study developed machine learning models to predict the risk of osteoporotic bone fractures. One is for postmenopausal women with osteoporosis, and the other is for general postmenopausal women. For each of these, two variable grouping options were used. The aggregation with the most predictive power included variables that are generally most accessible in medical practice. For postmenopausal women with osteoporosis, the AUC was 0.92, and for general postmenopausal women, it was 0.88. The results highlighted the significance of the previous fracture, DXA data, vitamin D levels, and PTH levels in predicting future fractures. Machine learning should be used to identify postmenopausal women at increased risk of fractures. This study summarizes that previous fractures, DXA, PTH, and vitamin D play crucial roles in identifying these women.es_ES
dc.description.sponsorshipThis research was partly supported by a grant from the Instituto de Salud Carlos III (PI21/00532), which was co-funded by European Union FEDER funds.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceScientific Reports, 2025, 15(1), 43329es_ES
dc.subject.otherOsteoporosises_ES
dc.subject.otherBone fracturees_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherParathormonees_ES
dc.subject.otherPTHes_ES
dc.subject.otherPostmenopausaes_ES
dc.titleAssessment of the risk of osteoporotic bone fracture in postmenopausal women using machine learning methodses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41598-025-27226-zes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1038/s41598-025-27226-z
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International