Mostrar el registro sencillo

dc.contributor.authorKeilbar, Georg
dc.contributor.authorRodríguez-Poo, Juan M. 
dc.contributor.authorSoberón Velez, Alexandra Pilar 
dc.contributor.authorWang, Weining
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2026-01-12T09:08:52Z
dc.date.available2026-01-12T09:08:52Z
dc.date.issued2026
dc.identifier.issn0747-4938
dc.identifier.issn1532-4168
dc.identifier.otherPID2019-105986GB-C2es_ES
dc.identifier.otherTED2021-131763A-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38730
dc.description.abstractThis article introduces a straightforward sieve-based approach for estimation and inference of regression parameters in panel data models with interactive fixed effects. The method's key assumption is that factor loadings can be decomposed into an unknown smooth function of individual characteristics plus an idiosyncratic error term. Our estimator offers advantages over existing approaches by taking a simple partial least squares form, eliminating the need for iterative procedures or preliminary factor estimation. The limiting distribution exhibits a discontinuity that depends on how well our basis functions explain the factor loadings, as measured by the variance of the error factor loadings. As a consequence, conventional "plug-in" methods using the estimated asymptotic covariance can produce excessively conservative coverage probabilities. We demonstrate that uniformly valid non conservative inference can be achieved through the cross-sectional bootstrap method. Monte Carlo simulations confirm the estimator's strong performance in terms of mean squared error and good coverage results for the bootstrap procedure. An application to cross-country growth rates shows that higher consumption and government spending are associated with lower growth. Contrary to existing methods, we find that within OECD countries investment fosters growth, whereas a higher investment price level reduces it.es_ES
dc.description.sponsorshipJuan M. Rodriguez-Poo and Alexandra Soberon acknowledge financial support from the I+D+i project Ref.PID2019-105986GB-C22 financed by MCIN/AEI/10.13039/ 501100011033. In addition, this work was also funded by the I+D+i project Ref. TED2021-131763A-I00 financed by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationUE/PRTR. Georg Keilbar acknowledges gratefully the support from the Deutsche Forschungsgemeinschaft via the IRTG 1792 “High Dimensional Nonstationary Time Series”. Weining Wang’s research is supported through the project ”IDA Institute of Digital Assets”, CF166/15.11.2022, contract number CN760046/23.05.2023, financed under the Romania’s National Recovery and Resilience Plan, Apel nr. PNRR-III-C9-2022-I8; and the Marie Skłodowska-Curie Actions under the European Union’s Horizon Europe research and innovation program for the Industrial Doctoral Network on Digital Finance, acronym: DIGITAL, Project No. 101119635. The research is partially supported by the ESRC (Grant Reference: ES/T01573X/1)es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherTaylor & Francises_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEconometric Reviews, 2026, 45(1), 93-110es_ES
dc.subject.otherCross-sectional dependencees_ES
dc.subject.otherLarge panelses_ES
dc.subject.otherPrincipal componentses_ES
dc.subject.otherSemiparametric factor modelses_ES
dc.subject.otherSieve approximationes_ES
dc.titleA projection-based approach for interactive fixed effects panel data modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1080/07474938.2025.2556702es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131763A-I00/ES/MODELIZACIÓN SEMIPARAMÉTRICA DE LA REGULACIÓN AMBIENTAL.COMPETITIVIDAD E INNOVACIÓN/es_ES
dc.identifier.DOI10.1080/07474938.2025.2556702
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International