Development of systematic uncertainty-aware neural network trainings for binned-likelihood analyses at the LHC
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Druzhkin, D.; Borshch, V.; Babaev, A.; Blanco Fernández, Sergio
; Cabrillo Bartolomé, José Ibán
; Calderón Tazón, Alicia
; Duarte Campderros, Jorge
; Fernández García, Marcos
; Gómez Gramuglio, Gervasio
; Lasaosa García, Clara; López Ruiz, Rubén; Martínez Rivero, Celso; Martínez Ruiz del Árbol, Pablo
; Matorras Weinig, Francisco
; Matorras Cuevas, Pablo
; Navarrete Ramos, Efrén
; Piedra Gómez, Jonatan
; Scodellaro, Luca
; Vila Álvarez, Iván
; [et al.]Fecha
2025-11-26Derechos
Attribution 4.0 International. © CERN for the benefit of the CMS Collaboration 2025
Publicado en
European Physical Journal C, 2025, 85(11), 1360
Editorial
Springer
Enlace a la publicación
Resumen/Abstract
We propose a neural network training method capable of accounting for the effects of systematic variations of the data model in the training process and describe its extension towards neural network multiclass classification. The procedure is evaluated on the realistic case of the measurement of Higgs boson production via gluon fusion and vector boson fusion in the tt decay channel at the CMS experiment. The neural network output functions are used to infer the signal strengths for inclusive production of Higgs bosons as well as for their production via gluon fusion and vector boson fusion. We observe improvements of 12 and 16% in the uncertainty in the signal strengths for gluon and vector-boson fusion, respectively, compared with a conventional neural network training based on cross-entropy.
Colecciones a las que pertenece
- D15 Artículos [908]
- D52 Artículos [1438]







