Mostrar el registro sencillo

dc.contributor.authorSuárez Plata, Daniel Nicolás 
dc.contributor.authorHernández Fernández, Pedro
dc.contributor.authorFernández Solórzano, Víctor Manuel 
dc.contributor.authorMarrero Callicó, Gustavo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-12-17T15:24:11Z
dc.date.available2025-12-17T15:24:11Z
dc.date.issued2025
dc.identifier.isbn979-8-3315-8091-9
dc.identifier.otherPID2023-148285OBC42es_ES
dc.identifier.otherPID2023-148285OB-C43es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38565
dc.description.abstractThis work presents a hardware-aware Neural Architecture Search (NAS) framework for video-based human action recognition, targeting real-time deployment on FPGAbased System-on-Chip (SoC) platforms. The proposed method explores a constrained search space of Convolutional Neural Network (CNN)-Recurrent Neural Network (RNN) architectures aligned with a hardware-software pipeline where CNNs are mapped to FPGA Deep Learning Processing Units (DPUs) and RNNs to embedded ARM cores. A reinforcement learning (RL)-based controller, guided by a position-based discounted reward strategy, progressively learns to generate architectures that emphasize high-impact design decisions. Experiments on the UCF101 dataset demonstrate that the proposed architectures achieve 81.07 % accuracy, among the highest reported for CNNRNN models relying exclusively on spatial information. The results validate the effectiveness of the proposed framework in driving hardware-compatible and performance-optimized architecture exploration.es_ES
dc.description.sponsorshipThis work has been supported by Projects PID2023-148285OBC42 and PID2023-148285OB-C43, funded by the Spanish MICIU/AEI/10.13039/501100011033 and by FEDER, UE, as part of the OASIS project (Open AI-Driven stack for enhanced HPEC platforms in embedded systems).es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.source40th Conference on Design of Circuits and Integrated Systems, Santander, 2025, 150-155es_ES
dc.subject.otherNeural architecture searches_ES
dc.subject.otherSoC FPGAes_ES
dc.subject.otherCNN-RNN architectureses_ES
dc.subject.otherVideo action recognitiones_ES
dc.subject.otherReinforcement learninges_ES
dc.subject.otherEmbedded AIes_ES
dc.subject.otherHardware-aware NASes_ES
dc.titleVideo action recognition in SoC FPGAs driven by neural architecture searches_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/DCIS67520.2025.11281932es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-148285OB-C43/ES/OASIS OPEN AI-DRIVEN STACK PARA PLATAFORMAS HPEC MEJORADAS EN SISTEMAS INTEGRADOS/es_ES
dc.identifier.DOI10.1109/DCIS67520.2025.11281932
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo