| dc.contributor.author | Suárez Plata, Daniel Nicolás | |
| dc.contributor.author | Hernández Fernández, Pedro | |
| dc.contributor.author | Fernández Solórzano, Víctor Manuel | |
| dc.contributor.author | Marrero Callicó, Gustavo | |
| dc.contributor.other | Universidad de Cantabria | es_ES |
| dc.date.accessioned | 2025-12-17T15:24:11Z | |
| dc.date.available | 2025-12-17T15:24:11Z | |
| dc.date.issued | 2025 | |
| dc.identifier.isbn | 979-8-3315-8091-9 | |
| dc.identifier.other | PID2023-148285OBC42 | es_ES |
| dc.identifier.other | PID2023-148285OB-C43 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10902/38565 | |
| dc.description.abstract | This work presents a hardware-aware Neural Architecture Search (NAS) framework for video-based human action recognition, targeting real-time deployment on FPGAbased System-on-Chip (SoC) platforms. The proposed method explores a constrained search space of Convolutional Neural Network (CNN)-Recurrent Neural Network (RNN) architectures aligned with a hardware-software pipeline where CNNs are mapped to FPGA Deep Learning Processing Units (DPUs) and RNNs to embedded ARM cores. A reinforcement learning (RL)-based controller, guided by a position-based discounted reward strategy, progressively learns to generate architectures that emphasize high-impact design decisions. Experiments on the UCF101 dataset demonstrate that the proposed architectures achieve 81.07 % accuracy, among the highest reported for CNNRNN models relying exclusively on spatial information. The results validate the effectiveness of the proposed framework in driving hardware-compatible and performance-optimized architecture exploration. | es_ES |
| dc.description.sponsorship | This work has been supported by Projects PID2023-148285OBC42 and PID2023-148285OB-C43, funded by the Spanish MICIU/AEI/10.13039/501100011033 and by FEDER, UE, as part of the OASIS project (Open AI-Driven stack for enhanced HPEC platforms in embedded systems). | es_ES |
| dc.format.extent | 6 p. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Institute of Electrical and Electronics Engineers, Inc. | es_ES |
| dc.rights | © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
| dc.source | 40th Conference on Design of Circuits and Integrated Systems, Santander, 2025, 150-155 | es_ES |
| dc.subject.other | Neural architecture search | es_ES |
| dc.subject.other | SoC FPGA | es_ES |
| dc.subject.other | CNN-RNN architectures | es_ES |
| dc.subject.other | Video action recognition | es_ES |
| dc.subject.other | Reinforcement learning | es_ES |
| dc.subject.other | Embedded AI | es_ES |
| dc.subject.other | Hardware-aware NAS | es_ES |
| dc.title | Video action recognition in SoC FPGAs driven by neural architecture search | es_ES |
| dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
| dc.relation.publisherVersion | https://doi.org/10.1109/DCIS67520.2025.11281932 | es_ES |
| dc.rights.accessRights | openAccess | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-148285OB-C43/ES/OASIS OPEN AI-DRIVEN STACK PARA PLATAFORMAS HPEC MEJORADAS EN SISTEMAS INTEGRADOS/ | es_ES |
| dc.identifier.DOI | 10.1109/DCIS67520.2025.11281932 | |
| dc.type.version | acceptedVersion | es_ES |