Mostrar el registro sencillo

dc.contributor.authorDintén Herrero, Ricardo 
dc.contributor.authorZorrilla Pantaleón, Marta E. 
dc.contributor.authorVeloso, Bruno
dc.contributor.authorGama, João
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-12-17T09:13:01Z
dc.date.available2025-12-17T09:13:01Z
dc.date.issued2026-03
dc.identifier.issn1566-2535
dc.identifier.issn1872-6305
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38558
dc.description.abstractOne of the key aspects of Industry 4.0 is using intelligent systems to optimize manufacturing processes by improving productivity and reducing costs. These systems have greatly impacted in different areas, such as demand prediction and quality assessment. However, the prognostics and health management of industrial equipment is one of the areas with greater potential. This paper presents a comparative analysis of deep learning architectures applied to the prediction of the remaining useful life (RUL) on public real industrial datasets. The analysis includes some of the most commonly employed recurrent neural network variations and a novel approach based on a hybrid architecture using transformers. Moreover, we apply explainability techniques to provide comprehensive insights into the model's decision-making process. The contributions of the work are: (1) a novel transformer-based architecture for RUL prediction that outperforms traditional recurrent neural networks; (2) a detailed description of the design strategies used to construct the models on two under-explored datasets; (3) the use of explainability techniques to understand the feature importance and to explain the model's prediction and (4) making models built for reproducibility available to other researchers.es_ES
dc.description.sponsorshipThis article is co-funded by the Spanish Government and FEDER funds (AEI/FEDER, UE) under grant PID2021-124502OB-C42 (PRESECREL); the predoctoral program “Concepción Arenal del Programa de Personal Investigador en formación Predoctoral” funded by Universidad de Cantabria and Cantabria’s Government (BOC 18-10-2021); the European Regional Development Fund (ERDF) through the Innovation and Digital Transition Programme (COMPETE 2030) under Portugal 2030; and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within project F.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceInformation Fusion, 2026, 127(Part C) 103892es_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherRULes_ES
dc.subject.otherXAIes_ES
dc.subject.otherIndustry 4.0 & 5.0es_ES
dc.subject.otherIndustrial Datasetses_ES
dc.titleBuilding of transformer-based RUL predictors supported by explainability techniques: application on real industrial datasetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.inffus.2025.103892es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.identifier.DOI10.1016/j.inffus.2025.103892
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license.