Mostrar el registro sencillo

dc.contributor.authorSobrino Santos, Ana
dc.contributor.authorAnuarbe Cortés, Pedro 
dc.contributor.authorFernández Viadero, Carlos
dc.contributor.authorGarcía García, Roberto
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-12-17T07:26:46Z
dc.date.available2025-12-17T07:26:46Z
dc.date.issued2025-06
dc.identifier.issn2227-7080
dc.identifier.otherCPP2022-009714es_ES
dc.identifier.otherPID2022-137269OB-C22es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38548
dc.description.abstractIn the context of global population aging, identifying reliable, objective tools to assess physical function and postural stability in older adults is increasingly important to mitigate fall risk. This study presents a non-contact platform that uses a Microsoft Azure Kinect depth camera to evaluate functional performance related to lower-limb muscular capacity and static balance through self-selected depth squats and four progressively challenging stances (feet apart, feet together, semitandem, and tandem). By applying markerless motion capture algorithms, the system provides key biomechanical parameters such as center of mass displacement, knee angles, and sway trajectories. A comparison of older and younger individuals showed that the older group tended to perform shallower squats and exhibit greater mediolateral and anteroposterior sway, aligning with age-related declines in strength and postural control. Longitudinal tracking also illustrated how performance varied following a fall, indicating potential for ongoing risk assessment. Notably, in 30 s balance trials, the first 10 s often captured meaningful differences in stability, suggesting that short-duration stance tests can reliably detect early signs of imbalance. These findings highlight the feasibility of low-cost, user-friendly depth-camera technologies to complement traditional clinical measures and guide targeted fall-prevention strategies in older populations.es_ES
dc.description.sponsorshipThis work was supported by projects CPP2022-009714 funded by MICIU/AEI/10.13039/501100011033 and EU NextGenerationEU/PRTR; and PID2022-137269OB-C22 funded by MICIU/AEI/10.13039/501100011033 and FEDER, EU.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceTechnologies, 2025, 13(6), 225es_ES
dc.subject.otherFunctional assessmentes_ES
dc.subject.otherDepth camerases_ES
dc.subject.otherSquates_ES
dc.subject.otherBalancees_ES
dc.subject.otherFallses_ES
dc.subject.otherBiomechanicses_ES
dc.titleNon-contact platform for the assessment of physical function in older adults: a pilot studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/technologies13060225
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025  by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license