| dc.contributor.author | Vérez, David | |
| dc.contributor.author | Borri, Emiliano | |
| dc.contributor.author | Crespo Gutiérrez, Alicia | |
| dc.contributor.author | Mselle, Boniface Dominick | |
| dc.contributor.author | de Gracia Cuesta, Álvaro | |
| dc.contributor.author | Zsembinszki, Gabriel | |
| dc.contributor.author | Cabeza Fabra, Luisa F. | |
| dc.contributor.other | Universidad de Cantabria | es_ES |
| dc.date.accessioned | 2025-12-09T09:19:04Z | |
| dc.date.available | 2025-12-09T09:19:04Z | |
| dc.date.issued | 2021-07-01 | |
| dc.identifier.issn | 2076-3417 | |
| dc.identifier.other | RTI2018-093849-B-C31 | |
| dc.identifier.other | RED2018-102431-T | |
| dc.identifier.uri | https://hdl.handle.net/10902/38460 | |
| dc.description.abstract | The use of latent heat thermal energy storage is an effective way to increase the efficiency of energy systems due to its high energy density compared with sensible heat storage systems. The design of the storage material encapsulation is one of the key parameters that critically affect the heat transfer in charging/discharging of the storage system. To fill the gap found in the literature, this paper experimentally investigates the effect of the macro-encapsulation design on the performance of a lab-scale thermal energy storage tank. Two rectangular slabs with the same length and width but different thickness (35 mm and 17 mm) filled with commercial phase change material were used. The results show that using thinner slabs achieved a higher power, leading to a reduction in the charging and discharging time of 14% and 30%, respectively, compared with the thicker slabs. Moreover, the variation of the heat transfer fluid flow rate has a deeper impact on the temperature distribution and the energy charged/released when thicker slabs were used. The macro-encapsulation design did not have a significant impact on the discharging efficiency of the tank, which was around 85% for the operating thresholds considered in this study. | es_ES |
| dc.description.sponsorship | This project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No. 764025 (SWS-HEATING). This work was partially
funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31—
MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades—Agencia
Estatal de Investigación (AEI) (RED2018-102431-T). This work is partially supported by ICREA under
the ICREA Academia program. | es_ES |
| dc.format.extent | 13 p. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.source | Applied Sciences, 2021, 11(13), 6171 | es_ES |
| dc.subject.other | Thermal energy storage | es_ES |
| dc.subject.other | Latent heat thermal energy storage | es_ES |
| dc.subject.other | Phase change materials (PCM) | es_ES |
| dc.subject.other | Macro-encapsulation | es_ES |
| dc.subject.other | Rectangular slab | es_ES |
| dc.subject.other | Experimental study | es_ES |
| dc.title | Experimental study on two PCM macro-encapsulation designs in a thermal energy storage tank | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.rights.accessRights | openAccess | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093849-B-C31/ES/METODOLOGIA PARA EL ANALISIS DE TECNOLOGIAS DE ALMACENAMIENTO DE ENERGIA TERMICA HACIA UNA ECONOMIA CIRCULAR/ | es_ES |
| dc.identifier.DOI | 10.3390/app11136171 | |
| dc.type.version | publishedVersion | es_ES |