Mostrar el registro sencillo

dc.contributor.authorHayrapetyan, A.
dc.contributor.authorBhowmik, Sandeep
dc.contributor.authorBlanco Fernández, Sergio 
dc.contributor.authorBrochero Cifuentes, Javier Andrés 
dc.contributor.authorCabrillo Bartolomé, José Ibán
dc.contributor.authorCalderón Tazón, Alicia 
dc.contributor.authorDuarte Campderros, Jorge 
dc.contributor.authorFernández García, Marcos 
dc.contributor.authorGómez Gramuglio, Gervasio 
dc.contributor.authorLasaosa García, Clara
dc.contributor.authorLópez Ruiz, Rubén
dc.contributor.authorMartínez Rivero, Celso
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorMatorras Weinig, Francisco 
dc.contributor.authorMatorras Cuevas, Pablo 
dc.contributor.authorNavarrete Ramos, Efrén 
dc.contributor.authorPiedra Gómez, Jonatan 
dc.contributor.authorScodellaro, Luca 
dc.contributor.authorVila Álvarez, Iván 
dc.contributor.authorVizán García, Jesús Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-12-04T17:52:57Z
dc.date.available2025-12-04T17:52:57Z
dc.date.issued2025-05-27
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.issn1550-7998
dc.identifier.issn1550-2368
dc.identifier.urihttps://hdl.handle.net/10902/38428
dc.description.abstractA measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Protonproton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb-1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV, and an upper limit on the width TH < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0+2.0-1.5 MeV, in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations.es_ES
dc.description.sponsorshipWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMSinstitutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contracts No. 675440, No. 724704, No. 752730, No. 758316, No. 765710, No. 824093, No. 101115353, No. 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, Project No. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation `a la Recherche dans l’Industrie et dans l’Agriculture (FRIABelgium); the F. R.S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS“—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, Grant No. FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), among others, under Germany’s Excellence Strategy— EXC 2121 “Quantum Universe”—390833306, and under Project No. 400140256—GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project No. 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program—ÚNKP, the NKFIH research Grants No. K 131991, No. K 133046, No. K 138136, No. K 143460, No. K 143477, No. K 146913, No. K 146914, No. K 147048, No. 2020-2.2.1ED-2021-00181, and No. TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC—National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR—Future Artificial Intelligence Research, funded by the NextGenerationEU program (Italy); the Latvian Council of Science; the Ministry of Education and Science, Project No. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/ 01552 (Poland); the Fundação para a Ciência e a Tecnologia, Grant No. CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe,” and the Programa Estatal de Fomento de la Investigación Científica y T´ecnica de Excelencia María de Maeztu, grant No. MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, Grant No. B39G670016 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, Contract C-1845; and the Weston Havens Foundation (USA).es_ES
dc.format.extent34 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePhysical Review D, 2025, 111, 092014es_ES
dc.titleMeasurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at V¯s=13 TeVes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1103/PhysRevD.111.092014es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1103/PhysRevD.111.092014
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International