Mostrar el registro sencillo

dc.contributor.authorUllah, Naimat
dc.contributor.authorSuliman, Munzir Hamedelniel
dc.contributor.authorKhan, Sikandar
dc.contributor.authorLaghari, Zubair Ahmed
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorHendi, Abdulmajeed Hasan Yahya
dc.contributor.authorUsman, Muhammad
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-12-03T09:24:11Z
dc.date.available2025-12-03T09:24:11Z
dc.date.issued2025-12
dc.identifier.issn2772-6568
dc.identifier.urihttps://hdl.handle.net/10902/38369
dc.description.abstractElectrochemical CO2 reduction (eCO2RR) is a promising method for transforming CO2 emissions into useful multicarbon products. This study involved the synthesis and evaluation of CuS/ZnS nanocomposites with varying compositions (CuS: ZnS = 1:1, 2:1, and 1:2) in both H-type and flow-cell electrolyzers. The catalyst with a 2:1 CuS/ZnS ratio (S2) exhibited excellent performance, with a Faradaic efficiency (FE) of 60 % for C1 products and approximately 20 % for C2 products (C2H4) at a current density of -280 mA·cm-2 in the flow-cell configuration. The flow-cell arrangement significantly enhanced catalytic activity, suppressed hydrogen evolution, and increased selectivity for CH4 and C2H4 at greater negative potentials. Augmented ethylene production was ascribed to Cu-rich active sites promoting efficient C-C coupling and increased CO2 accessibility at gas diffusion electrodes (GDEs), corroborated by low charge-transfer resistance. This work emphasizes the pivotal importance of catalyst composition and reactor design, showcasing the 2:1 CuS/ZnS catalyst in a flow-cell format as a scalable and effective method for sustainable CO2 conversion to multicarbon fuels. Density functional theory (DFT) calculations further validated the experimental results by revealing favorable adsorption energies and interactions between the CuS/ZnS catalyst and key intermediates in the CO2 conversion process.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2025 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCarbon Capture Science and Technology, 2025, 17, 100532es_ES
dc.subject.othereCO2RRes_ES
dc.subject.otherCuS-ZnS catalystses_ES
dc.subject.otherFlow celles_ES
dc.subject.otherAffordable and clean energyes_ES
dc.subject.otherClimate actiones_ES
dc.titleElectroreduction of CO2 to C1 and C2 products on dual active siteses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ccst.2025.100532es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ccst.2025.100532
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).