Surfaces with central configuration and Dulac's problem for a three dimensional isolated Hopf singularity
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2025-12Derechos
Attribution 4.0 International
Publicado en
Journal of Dynamics and Differential Equations, 2025, 37(4), 2981-3023
Editorial
Springer
Enlace a la publicación
Palabras clave
Hopf-zero singularity
Dulac problem in R3
Local finiteness of limit cycles
Invariant surfaces
Reduction of singularities
Resumen/Abstract
Let E be a real analytic vector field with an elementary isolated singularity at 0ER3 and eigenvalues ±bi,c with b,cER and b( no=) 0. We prove that all cycles of o in a sufficiently small neighborhood of 0, if they exist, are contained in the union of finitely many subanalytic invariant surfaces, each one entirely composed of a continuum of cycles. In particular, we solve Dulac's problem for such vector fields, i.e., finiteness of limit cycles.
Colecciones a las que pertenece
- D21 Artículos [438]
- D21 Proyectos de Investigación [344]








