Fractional radial transport in cylindrical geometry
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/38353DOI: 10.1103/w2pz-z9kq
ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCFecha
2025-11Derechos
Attribution 4.0 International
Publicado en
Physical Review E, 2025, 112(5), 055205
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
A transport equation is derived from microscopic considerations, aimed at modeling fractional radial transport in cylindrical-like geometries. The procedure generalizes existing work on one-dimensional Cartesian systems. The transport equation emerges as the fluid limit of an underlying continuous-time random walk (CTRW) that preserves the required symmetries and conservation laws. In the process, appropriate radial fractional operators are identified and defined through their Hankel transforms, providing a smooth interpolation between standard radial differential operators. Finally, propagators for the radial fractional transport equation are obtained in terms of Fox H functions.
Colecciones a las que pertenece
- D14 Artículos [212]
- D14 Proyectos de investigación [142]








