Mostrar el registro sencillo

dc.contributor.authorGonzález Villa, Javier 
dc.contributor.authorLázaro Urrutia, David 
dc.contributor.authorCuesta Jiménez, Arturo 
dc.contributor.authorBalboa Marras, Adriana 
dc.contributor.authorAlvear Portilla, Manuel Daniel 
dc.contributor.authorLázaro Urrutia, Mariano 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-11-28T13:45:01Z
dc.date.available2025-11-28T13:45:01Z
dc.date.issued2025-12
dc.identifier.issn2666-8270
dc.identifier.otherTED2021-132410B-I00es_ES
dc.identifier.otherPLEC2023-010303es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38309
dc.description.abstractWildfires threatening the wildland urban interface present significant risks to community safety, especially under conditions of inadequate vegetation management and adverse weather. Accurately identifying scenarios in which fire reaches this interface is crucial for timely evacuation planning and risk mitigation. This study presents a computational method using cellular automata and stochastic simulations to model wildfire spread. Stochastic scenarios generated through the cellular automata are employed to train a reinforcement learning model, which leverages computer vision techniques to interpret multiple layers representing diverse environmental factors. This enables the reinforcement learning agent to identify and prioritise critical fire trajectories that could impact the wildland urban interface. The framework adapts the Rothermel surface fire spread model within a cellular automata structure, providing a simplified yet effective simulation of fire propagation under variable conditions. The proposed approach was validated using synthetic and real-world case studies, demonstrating its potential for integration with geographic information systems. Results suggest this approach enhances the identification of critical fire spread scenarios and improves computational efficiency for real-time applications. By enabling real-time recognition of high-risk events, our framework supports more informed evacuation strategies and fire management decisions around the wildland urban interface.es_ES
dc.description.sponsorshipThis publication is derived from the projects ‘Real time Applica-tion for Protecting People In Disasters (RAPPID)’, Grant TED2021-132410B-I00 funded by MICIU/AEI/10.13039/501100011033 and by ‘‘European Union NextGenerationEU/PRTR’’ and project ‘‘IntegratedManagement for Prevention, Extinction and Reforestation ofForest Fires (GAIA)’’ Grant PLEC2023-010303 funded by MICIU/AEI/ 10.13039/501100011033.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMachine Learning with Applications, 2025, 22, 100779es_ES
dc.subject.otherWildfirees_ES
dc.subject.otherCellular automataes_ES
dc.subject.otherStochastic simulationes_ES
dc.subject.otherReinforcement learninges_ES
dc.subject.otherWild-land urban interfacees_ES
dc.subject.otherRothermel surface fire spread modeles_ES
dc.titleIdentifying critical fire spread to the wildland-urban interface using cellular automata and reinforcement learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.mlwa.2025.100779es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.mlwa.2025.100779
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International