Mostrar el registro sencillo

dc.contributor.authorAbarca González, José Antonio 
dc.contributor.authorGonzález Fernández, Cristina 
dc.contributor.authorEstevan Peralta, Camilo
dc.contributor.authorArruti Fernández, Axel 
dc.contributor.authorSantos Santamaría, Esther 
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-11-28T08:59:02Z
dc.date.available2025-11-28T08:59:02Z
dc.date.issued2025-09-23
dc.identifier.issn1864-5631
dc.identifier.issn1864-564X
dc.identifier.otherPID2022-138491OB-C31es_ES
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38305
dc.description.abstractThe scale-up of gas-phase CO2 electroreduction to formate is crucial for its industrial application but remains largely unexplored. This work presents the design and validation of a 100 cm2 electrolyzer prototype featuring a zero-gap configuration and a serpentine flow field to ensure uniform CO2 distribution. Scaling up a CO2 electrolyzer requires optimized flow field design, in this case, a serpentine geometry enhances CO2 transport and minimizes mass transfer limitations, thereby improving overall performance. Experimental prototype testing is conducted to evaluate the effects of current density and water content in the CO2 feed. Optimal performance is achieved at 200 mA cm-2 and a water content of 15 g h-1, yielding a formate concentration of 760 gL-1, a Faradaic efficiency of 67%, a production rate of 7 mmol m-2 s-1, and an energy consumption of 507 kWh kmol-1. Comparisons with a 10 cm2 lab-scale reactor reveal improved CO2 conversion and production rate, validating the benefits of optimized flow field design and scale-up approach. While energy efficiency is somewhat reduced to increased Ohmic losses, the overall results support the technical feasibility of scaling gas-phase CO2-to-formate electrolysis. Further improvements in design and energy management are still needed to advance toward industrial implementation.es_ES
dc.description.sponsorshipThe authors fully acknowledge the financial support received from the Spanish State Research Agency (AEI) through the projects PID2022- 138491OB-C31 (MICIU/AEI /10.13039/ 501100011033 and FEDER, UE), TED2021-129810B-C21, and PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and European Union Next Generation EU/PRTR). The present work is related to CAPTUS Project. This project received funding from the European Union's Horizon Europe research and innovation program under grant agreement No 101118265. J.A.A. gratefully acknowledges the predoctoral research grant (FPI) PRE2021-097200. C.G-F. thanks the Spanish Ministry of Universities for the Margarita Salas postdoctoral fellowship (grants for the requalification of the Spanish university system for 2021-2023, University of Cantabria), funded by the European Union-NextGenerationEU.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCH Verlages_ES
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceChemsuschem, 2025, 18(18), e202501116es_ES
dc.sourceFall Meeting of the European Materials Research Society (E-MRS), Warsaw, Poland, 2024es_ES
dc.titlePrototype validation of a large-scale CO2-to-formate zero-gap electrolyzeres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/cssc.202501116es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HORIZON/101118265/EU/Demonstrating energy intensive industry-integrated solutions to produce liquid renewable energy carriers from CAPTUred carbon emissionS/CAPTUS/es_ES
dc.identifier.DOI10.1002/cssc.202501116
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International