Mostrar el registro sencillo

dc.contributor.authorKhakurel, Krishna P.
dc.contributor.authorClady, Raphael
dc.contributor.authorEspinoza, Shirly
dc.contributor.authorChaulagain, Uddhab
dc.contributor.authorFerre, Amelie
dc.contributor.authorAndreasson, Jakob
dc.contributor.authorLusordo, Maria
dc.contributor.authorJuan, Dilson 
dc.contributor.authorUteza, Olivier
dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-11-27T17:09:15Z
dc.date.available2025-11-27T17:09:15Z
dc.date.issued2025-10-01
dc.identifier.issn2159-3930
dc.identifier.urihttps://hdl.handle.net/10902/38297
dc.description.abstractGallium sulphide (GaS) is an emerging monochalcogenide material that has recently attracted interest in optical technologies due to its tunable bandgap in the near-UV region. In this work, we employ in situ, in-operando X-ray diffraction to investigate local atomic modifications in GaS induced by 400-nm femtosecond laser pulses. We identify the energy threshold at which irreversible structural changes occur and observe a laser-induced elongation of the unit cell along the c-axis. This elongation is expected to enhance the anisotropy of the material's physical properties. Ab initio calculations further reveal that the experimentally observed ≈ 10% elongation along the c-axis leads to a transition from a direct to an indirect bandgap, accompanied by a bandgap increase of approximately 0.45 eV. Additional ab-initio optical simulations show that this structural transformation results in a nearly constant in-plane refractive index contrast of Dn ≈ 0.1 across a wide spectral range, from the visible to the near-infrared, with negligible optical losses, which could be of interest for reconfigurable photonics applications.es_ES
dc.description.sponsorshipELI ERIC; ADONIS (CZ.02.1.01/0.0/0.0/16 019/0000789); European Union’s Horizon 2020 Research and Innovation Program (899598-PHEMTRONICS,871124); Ramon y Cajal Fellowship (RYC2022-037828-I); HEU-GA (101131771); European Commission (101094299 (IMPRESS)).es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherOptica Publishing Groupes_ES
dc.rights© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reservedes_ES
dc.sourceOptical Materials Express, 2025, 15(10), 2534-2544es_ES
dc.titleEngineering GaS crystal anisotropy via ultrafast laser excitationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1364/OME.573293es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/899598/eu/Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices/PHEMTRONICS/es_ES
dc.identifier.DOI10.1364/OME.573293
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo