Mostrar el registro sencillo

dc.contributor.authorSierra Menéndez, Sergio 
dc.contributor.authorRamo Sánchez, Rubén
dc.contributor.authorPadilla, Marc
dc.contributor.authorQuirós, Laura
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-11-27T12:42:48Z
dc.date.available2025-11-27T12:42:48Z
dc.date.issued2025-10-01
dc.identifier.issn2072-4292
dc.identifier.otherPID2022-137269OB-C22les_ES
dc.identifier.urihttps://hdl.handle.net/10902/38287
dc.description.abstractLand cover mapping is essential for territorial management due to its links with ecological, hydrological, climatic, and socioeconomic processes. Traditional methods use discrete classes per pixel, but this study proposes estimating cover fractions with Sentinel-2 imagery (20 m) and AI. We employed the French Land cover from Aerospace ImageRy (FLAIR) dataset (810 km2 in France, 19 classes), with labels co-registered with Sentinel-2 to derive precise fractional proportions per pixel. From these references, we generated training sets combining spectral bands, derived indices, and auxiliary data (climatic and tempo-ral variables). Various machine learning models-including XGBoost three deep neural network (DNN) architectures with different depths, and convolutional neural networks (CNNs) were trained and evaluated to identify the optimal configuration for fractional cover estimation. Model validation on the test set employed RMSE, MAE, and R2 metrics at both pixel level (20 m Sentinel-2) and scene level (100 m FLAIR). The training set integrating spectral bands, vegetation indices, and auxiliary variables yielded the best MAE and RMSE results. Among all models, DNN2 achieved the highest performance, with a pixel-level RMSE of 13.83 and MAE of 5.42, and a scene-level RMSE of 4.94 and MAE of 2.36. This fractional approach paves the way for advanced remote sensing applications, including con-tinuous cover-change monitoring, carbon footprint estimation, and sustainability-oriented territorial planning.es_ES
dc.description.sponsorshipThis research was supported by the industrial doctorate grant DIN2021-011907 funded by MICIU/AEI/https://doi.org/10.13039/501100011033 and DI37 funded by Universidad de Cantabria and project “Photonic Sensors for Sustainable Smart Cities PERFORMANCE” PID2022-137269OBC22l(MICIU/AEI/https://doi.org/10.13039/501100011033andERDF/EU).es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceRemote Sensing, 2025, 17(19), 3364es_ES
dc.subject.otherLand cover fraction mappinges_ES
dc.subject.otherSentinel-2es_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherDeep-learninges_ES
dc.subject.otherLand coveres_ES
dc.titleEstimating fractional land cover using sentinel-2 and multi-source data with traditional machine learning and deep learning approacheses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/rs17193364
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.