Mostrar el registro sencillo

dc.contributor.authorDintén Herrero, Ricardo 
dc.contributor.authorZorrilla Pantaleón, Marta E. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-11-27T11:24:44Z
dc.date.available2025-11-27T11:24:44Z
dc.date.issued2025-07
dc.identifier.issn1526-1492
dc.identifier.issn1526-1506
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.urihttps://hdl.handle.net/10902/38284
dc.description.abstractPredictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate embeddings of the input data space, making them more interpretable for machine learning models. To evaluate the effectiveness of our approach, we trained three classical machine learning algorithms and one neural network using the embeddings generated by the TSFM called Moment for predicting the remaining useful life of aircraft engines. We test the models trained with both the full training dataset and only 10% of the training samples. Our results show that training simple models, such as support vector regressors or neural networks, with embeddings generated by Moment not only accelerates the training process but also enhances performance in few-shot learning scenarios, where data is scarce. This suggests a promising alternative to complex deep learning architectures, particularly in industrial contexts with limited labeled data.es_ES
dc.description.sponsorshipFunded by the Spanish Government and FEDER funds (AEI/FEDER, UE) under grant PID2021-124502OB-C42 (PRESECREL) and the predoctoral program “Concepción Arenal del Programa de Personal Investigador en formación Predoctoral” funded by Universidad de Cantabria and Cantabria’s Government (BOC 18-10-2021).es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherTech Science Presses_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceComputer Modeling in Engineering and Sciences, 2025, 144(1), 239-265es_ES
dc.titleUsing time series foundation models for few-shot remaining useful life prediction of aircraft engineses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.32604/cmes.2025.065461es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/
dc.identifier.DOI10.32604/cmes.2025.065461
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International