| dc.contributor.author | Chege, Stephen | |
| dc.contributor.author | Bastogne, Louis | |
| dc.contributor.author | Gómez Ortiz, Fernando | |
| dc.contributor.author | Sifuna, James | |
| dc.contributor.author | Amolo, George | |
| dc.contributor.author | Ghosez, Philippe | |
| dc.contributor.author | Junquera Quintana, Francisco Javier | |
| dc.contributor.other | Universidad de Cantabria | es_ES |
| dc.date.accessioned | 2025-11-05T08:33:05Z | |
| dc.date.available | 2025-11-05T08:33:05Z | |
| dc.date.issued | 2025-07 | |
| dc.identifier.issn | 0021-8979 | |
| dc.identifier.issn | 1089-7550 | |
| dc.identifier.issn | 1520-8850 | |
| dc.identifier.other | PID2022-139776NB-C63 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10902/38066 | |
| dc.description.abstract | We investigate the emergence of Bloch-type polarization components in 180º ferroelectric domain walls in bulk PbTiO3 under varying mechanical boundary conditions, using first-principles simulations based on density functional theory. A spontaneous Bloch component--primarily associated with Pb displacements confined within the PbO domain wall plane--can condense under realistic strain conditions on top of the Ising-type domain walls. The amplitude and energetic stabilization of this component are highly sensitive to the in-plane lattice parameters. In particular, tensile strains akin to those imposed by DyScO3 substrates enhance the Bloch component and lead to energy reductions as large as 10.7 mJ/m2 (10.6 meV/ where stands for "per domain wall unit cell") with respect to the most stable structure including only Ising and Néel components. We identify a relatively flat energy landscape for the Bloch polarization, highlighting the tunability of chiral textures through strain engineering. Our results offer a predictive framework for estimating the strain-dependent onset temperature of Bloch-type domain wall components and provide insight into the design of topologically nontrivial and chiral polar structures in ferroelectrics. | es_ES |
| dc.description.sponsorship | S.C. acknowledges the financial support from Erasmus+ KA-107 action and the Vice-rectorate for the Internationalisation and Global Engagement of the University of Cantabria. J.J. acknowledges the financial support from Grant No. PID2022-139776NB-C63 funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe” by the European Union. F.G.-O., L.B., and Ph.G. acknowledge the support by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 964931 (TSAR). F.G.-O. also
acknowledges the financial support from MSCA-PF 101148906 funded by the European Union and the Fonds de la Recherche Scientifique (FNRS) through the grant FNRS-CR 1.B.227.25F. Ph.G. also acknowledges the support from the Fonds de la Recherche Scientifique (FNRS) through the PDR project PROMOSPAN (Grant No. T.0107.20). The authors also acknowledge the computer resources, technical expertise, and assistance provided by the Centre for High Performance Computing (CHPC-MATS862), Cape Town, South Africa. | es_ES |
| dc.format.extent | 11 p. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | American Institute of Physics | es_ES |
| dc.rights | Attribution 4.0 International | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.source | Journal of Applied Physics, 2025, 138(4), 044105 | es_ES |
| dc.title | Strain dependence of the Bloch domain component in 180° domains in bulk PbTiO3 from first-principles | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.relation.publisherVersion | https://doi.org/10.1063/5.0279988 | es_ES |
| dc.rights.accessRights | openAccess | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139776NB-C63/ES/ECOSISTEMA SIESTA DE TECNICAS DE SIMULACION DE MATERIALES (SIESTA-UC)/ | |
| dc.identifier.DOI | 10.1063/5.0279988 | |
| dc.type.version | publishedVersion | es_ES |