Strain dependence of the Bloch domain component in 180° domains in bulk PbTiO3 from first-principles
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/38066DOI: 10.1063/5.0279988
ISSN: 0021-8979
ISSN: 1089-7550
ISSN: 1520-8850
Registro completo
Mostrar el registro completo DCAutoría
Chege, Stephen; Bastogne, Louis; Gómez Ortiz, Fernando
; Sifuna, James; Amolo, George; Ghosez, Philippe; Junquera Quintana, Francisco Javier
Fecha
2025-07Derechos
Attribution 4.0 International
Publicado en
Journal of Applied Physics, 2025, 138(4), 044105
Editorial
American Institute of Physics
Enlace a la publicación
Resumen/Abstract
We investigate the emergence of Bloch-type polarization components in 180º ferroelectric domain walls in bulk PbTiO3 under varying mechanical boundary conditions, using first-principles simulations based on density functional theory. A spontaneous Bloch component--primarily associated with Pb displacements confined within the PbO domain wall plane--can condense under realistic strain conditions on top of the Ising-type domain walls. The amplitude and energetic stabilization of this component are highly sensitive to the in-plane lattice parameters. In particular, tensile strains akin to those imposed by DyScO3 substrates enhance the Bloch component and lead to energy reductions as large as 10.7 mJ/m2 (10.6 meV/ where stands for "per domain wall unit cell") with respect to the most stable structure including only Ising and Néel components. We identify a relatively flat energy landscape for the Bloch polarization, highlighting the tunability of chiral textures through strain engineering. Our results offer a predictive framework for estimating the strain-dependent onset temperature of Bloch-type domain wall components and provide insight into the design of topologically nontrivial and chiral polar structures in ferroelectrics.
Colecciones a las que pertenece
- D29 Artículos [349]
- D29 Proyectos de Investigación [269]







