Transformación de la agricultura con ciencia de datos
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/38047Registro completo
Mostrar el registro completo DCAutoría
Bravo Moreno, SantiagoFecha
2025-09Director/es
Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International
Palabras clave
Aprendizaje automático
Análisis predictivo
Ciencia de datos
Agricultura 4.0
Sostenibilidad alimentaria
Eficiencia agrícola
Agricultura inteligente
Machine learning
Predictive analytics
Data science
Agriculture 4.0
Food sustainability
Agricultural efficiency
Smart agriculture
Resumen/Abstract
Este trabajo analiza cómo la ciencia de datos puede cambiar la forma en que entendemos y trabajamos la agricultura, centrándose en cómo ayuda a mejorar la producción y hacerla más eficiente. Primero, se repasa la evolución del sector, desde métodos tradicionales hasta la agricultura 4.0, mostrando que cada avance ha resuelto problemas, pero también ha enfrentado retos, como el uso eficiente de recursos, la sostenibilidad y el impacto del clima. De ahí surge la idea central: aprovechar los datos para gestionar mejor todo el proceso agrícola. Se explican las oportunidades que ofrece la ciencia de datos y cómo puede aplicarse en la agricultura. Se analiza el papel del Big data, IoT, minería de datos y otras tecnologías que permiten recopilar y procesar información para tomar decisiones más rápidas y acertadas. También se aborda el proceso ETL, base para convertir datos en información útil. Este flujo, común en distintas industrias, se adapta a la agricultura para que los agricultores puedan aprovecharlo. Asimismo, se desarrolla un caso práctico en la región de La Rioja, utilizando datos históricos del clima (temperatura, lluvias, humedad) para estudiar su relación y efecto con la producción de uva. Se aplican modelos de ciencia de datos como árboles de decisión y clustering con la ayuda de la herramienta Weka para identificar cómo influyen estas variables en el rendimiento. El objetivo es demostrar que los datos no solo sirven para analizar lo que pasó, sino también para anticipar resultados y mejorar la gestión de la cosecha. Los resultados muestran que, con estas herramientas, es posible prever escenarios y hacer ajustes que aumenten la eficiencia y la calidad del cultivo. Sin embargo, también se señalan retos como la falta de acceso a tecnología para pequeños productores, la dependencia digital y la protección de datos. En conclusión, la integración de la ciencia de datos en la agricultura no es solo una ventaja competitiva, sino una necesidad para avanzar hacia una producción más sostenible e inteligente 
This paper analyzes how data science can change the way we understand and work in agriculture, focusing on how it helps improve production and make it more efficient. First, it reviews the evolution of the sector, from traditional methods to Agriculture 4.0, demonstrating that each advancement has solved problems but also left challenges, such as the efficient use of resources, sustainability, and the impact of climate change. From this arises the central idea: leveraging data to better manage the entire agricultural process.
The main section explains the opportunities offered by data science and how it can be applied in agriculture. It examines the role of Big Data, IoT, data mining, and other technologies that enable the collection and processing of information to make faster and more accurate decisions. It also addresses the ETL process, which forms the foundation for converting data into useful information. This workflow, common in various industries, is adapted to agriculture so that farmers can take advantage of it. Then, a practical case is developed in the region of La Rioja, using historical climate data (temperature, rainfall, humidity) to study its relationship and effect with grape production. Models such as decision trees and clustering are applied with the help of Weka to identify how these variables influence yield. The objective is to demonstrate that data is not only useful for analyzing what happened but also for anticipating results and improving crop management. The results show that, with these tools, it is possible to predict scenarios and make adjustments that increase efficiency and crop quality. However, challenges such as a lack of access to technology for small producers, digital dependency, and data protection are also highlighted. In conclusion, integrating data science into agriculture is not just a competitive advantage but a necessity to move toward more sustainable and intelligent production








