| dc.contributor.author | López-Gómez, Julián | |
| dc.contributor.author | Sampedro Pascual, Juan Carlos | |
| dc.contributor.other | Universidad de Cantabria | es_ES |
| dc.date.accessioned | 2025-10-28T13:30:30Z | |
| dc.date.available | 2025-10-28T13:30:30Z | |
| dc.date.issued | 2021 | |
| dc.identifier.issn | 1661-7738 | |
| dc.identifier.other | PGC2018-097104-B-I00 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10902/37987 | |
| dc.description.abstract | In this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray-Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], X, and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], o(· , [a, b]) , which provides the key step for establishing the uniqueness of the degree for Fredholm maps. | es_ES |
| dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
| dc.format.extent | 28 p. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights | Attribution 4.0 International © The Author(s) 2021 | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.source | Journal of Fixed Point Theory and Applications, 2022, 24(1), 8 | es_ES |
| dc.subject.other | Degree for Fredholm maps | es_ES |
| dc.subject.other | Uniqueness | es_ES |
| dc.subject.other | Axiomatization | es_ES |
| dc.subject.other | Normalization | es_ES |
| dc.subject.other | Generalized additivity | es_ES |
| dc.subject.other | Homotopy invariance | es_ES |
| dc.subject.other | Generalized algebraic multiplicity | es_ES |
| dc.subject.other | Parity | es_ES |
| dc.subject.other | Orientability | es_ES |
| dc.title | Axiomatization of the degree of Fitzpatrick, Pejsachowicz and Rabier | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.relation.publisherVersion | https://doi.org/10.1007/s11784-021-00916-7 | es_ES |
| dc.rights.accessRights | openAccess | es_ES |
| dc.identifier.DOI | 10.1007/s11784-021-00916-7 | |
| dc.type.version | publishedVersion | es_ES |