Generating loops and isolas in semilinear elliptic BVP's
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2023Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
Publicado en
Nonlinear Analysis: Theory, Methods and Applications, 2023, 232, 113268
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Loops and isolas
Positive and negative solutions
Bi-parametric bifurcation theory for Fredholm operators
Resumen/Abstract
In this paper, we ascertain the global ?-structure of the set of positive and negative solutions bifurcating from u=0 for the semilinear elliptic BVP-dAu=Ya,Au+u+u2uqin,u=0on,according to the values of d>0 and the integer number q4. Figs. 1.1-1.3 summarize the main findings of this paper according to the values of d and q. Note that the role played by the parameter Y in this model is very special, because, besides measuring the strength of the convection, it quantifies the amplitude of the nonlinear term Yu2. We regard to this problem as a mathematical toy to generate solution loops and isolas in Reaction Diffusion equations.
Colecciones a las que pertenece
- D20 Artículos [486]
- D20 Proyectos de Investigación [343]







