Periodic solutions to superlinear indefinite planar systems: A topological degree approach
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2023Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International © 2023 The author(s) Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
Publicado en
Journal of Differential Equations, 2023, 363, 546-581
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Periodic problem
Neumann problem
Planar system
Indefinite weight
Positive solutions
Superlinear nonlinearity
Coincidence degree
Resumen/Abstract
We deal with a planar differential system of the form {u'=h(t,v),v'=Ya(t)g(u), where h is T-periodic in the first variable and strictly increasing in the second variable, Y>0, a is a sign-changing T-periodic weight function and g is superlinear. Based on the coincidence degree theory, in dependence of Y, we prove the existence of T-periodic solutions (u,v) such that u(t)>0 for all tER. Our results generalize and unify previous contributions about Butler's problem on positive periodic solutions for second-order differential equations (involving linear or O-Laplacian-type differential operators).
Colecciones a las que pertenece
- D20 Artículos [486]







