Mostrar el registro sencillo

dc.contributor.authorLópez Gómez, Julián
dc.contributor.authorSampedro Pascual, Juan Carlos
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-10-27T13:56:45Z
dc.date.available2025-10-27T13:56:45Z
dc.date.issued2024
dc.identifier.issn1090-2732
dc.identifier.issn0022-0396
dc.identifier.otherPID2021?123343NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/37974
dc.description.abstractThis paper consists of four parts. It begins by using the authors' generalized Schauder formula, [41], and the algebraic multiplicity, X, of Esquinas and López-Gómez [15,14,31] to package and sharpening all existing results in local and global bifurcation theory for Fredholm operators through the recent author's axiomatization of the Fitzpatrick-Pejsachowicz-Rabier degree, [42]. This facilitates reformulating and refining all existing results in a compact and unifying way. Then, the local structure of the solution set of analytic nonlinearities F(Y,u)=0 at a simple degenerate eigenvalue is ascertained by means of some concepts and devices of Algebraic Geometry and Galois Theory, which establishes a bisociation between Bifurcation Theory and Algebraic Geometry. Finally, the unilateral theorems of [31,33], as well as the refinement of Shi and Wang [53], are substantially generalized. This paper also analyzes two important examples to illustrate and discuss the relevance of the abstract theory. The second one studies the regular positive solutions of a multidimensional quasilinear boundary value problem of mixed type related to the mean curvature operator.es_ES
dc.description.sponsorshipThe authors have been supported by the Research Grant PID2021–123343NB-I00 of the Spanish Ministry of Science and Innovation and by the Institute of Interdisciplinar Mathematics of Complutense University.es_ES
dc.format.extent69 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 International © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Differential Equations, 2024, 404, 182-250es_ES
dc.subject.otherFitzpatrick–Pejsachowicz–Rabier degreees_ES
dc.subject.otherGeneralized algebraic multiplicityes_ES
dc.subject.otherGlobal bifurcation theoryes_ES
dc.subject.otherUnilateral bifurcationes_ES
dc.subject.other1-D boundary value problemses_ES
dc.subject.otherQuasilinear problemses_ES
dc.titleBifurcation theory for Fredholm operatorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jde.2024.05.040es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jde.2024.05.040
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 International © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).