Mostrar el registro sencillo

dc.contributor.authorGarcía Vicente, Clara
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorJiménez García, Jorge
dc.contributor.authorMartín Montero, Adrián 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-10-09T13:53:22Z
dc.date.available2025-10-09T13:53:22Z
dc.date.issued2023-12
dc.identifier.issn0010-4825
dc.identifier.issn1879-0534
dc.identifier.otherPID2020-115468RB-I00es_ES
dc.identifier.otherPDC2021-120775-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/37723
dc.description.abstractObstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.es_ES
dc.description.sponsorshipThis research was supported by ‘Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación/10.13039/501100011033/‘, ‘ERDF A way of making Europe’, and ‘European Union NextGenerationEU/PRTR’ under projects PID2020-115468RB-I00 and PDC2021-120775-I00, and by ‘CIBER -Consorcio Centro de Investigación Biomédica en Red-(CB19/01/00012)’ through ‘Instituto de Salud Carlos III’, as well as under the project TinyHeart from 2022 Early Stage call. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). C. García-Vicente was in receipt of a ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the ‘Minisiterio de Ciencia, Innovación y Universidades (PRE2021-100792)’. J. Jiménez-García was in receipt of a PIF-UVa grant of the University of Valladolid. A. Martín-Montero was in receipt of a ‘Ayudas para contratos predoctorales para la Formación de Doctores’ grant from the ‘Ministerio de Ciencia, Innovación y Universidades (PRE2018-085219)’. GC. Gutiérrez-Tobal is supported by a post-doctoral grant from the University of Valladolid.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputers in Biology and Medicine, 2023, 167, 107628es_ES
dc.subject.otherObstructive sleep apneaes_ES
dc.subject.otherPediatricses_ES
dc.subject.otherElectrocardiogrames_ES
dc.subject.otherConvolutional neural networkes_ES
dc.subject.otherApnea-hypopnea indexes_ES
dc.subject.otherChildhood adenotonsillectomy triales_ES
dc.titleECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.compbiomed.2023.107628es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.compbiomed.2023.107628
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International