Mostrar el registro sencillo

dc.contributor.authorCalleja, Rafael
dc.contributor.authorRivera, Marcos
dc.contributor.authorGuijo Rubio, David
dc.contributor.authorHessheimer, Amelia J.
dc.contributor.authorDe La Rosa, Gloria
dc.contributor.authorGastaca, Mikel
dc.contributor.authorOtero, Alejandra
dc.contributor.authorRamírez, Pablo
dc.contributor.authorBoscà Robledo, Andrea
dc.contributor.authorSantoyo, Julio
dc.contributor.authorMarín Gómez, Luis Miguel
dc.contributor.authorVillar Del Moral, Jesús
dc.contributor.authorFundora, Yiliam
dc.contributor.authorLladó, Laura
dc.contributor.authorLoinaz, Carmelo
dc.contributor.authorJiménez Garrido, Manuel C.
dc.contributor.authorRodríguez Laíz, Gonzalo
dc.contributor.authorLópez Baena, José Á
dc.contributor.authorCharco, Ramón
dc.contributor.authorRodríguez Sanjuán, Juan Carlos
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-10-08T09:32:04Z
dc.date.available2025-10-08T09:32:04Z
dc.date.issued2025
dc.identifier.issn2813-2440
dc.identifier.urihttps://hdl.handle.net/10902/37714
dc.description.abstractBackground: Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed. Methods: This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained. Results: Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score. Conclusions: The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.publisherWolters Kluwer Healthes_ES
dc.rights© 2025 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons AttributionNonCommercial-NoDerivatives License 4.0.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceFrontiers in Transplantation, 2025, 109(7), e362-e370es_ES
dc.titleMachine learning algorithms in controlled donation after circulatory death under normothermic regional perfusion: a graft survival prediction modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1097/tp.0000000000005312es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1097/TP.0000000000005312
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons AttributionNonCommercial-NoDerivatives License 4.0.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons AttributionNonCommercial-NoDerivatives License 4.0.