Dynamics and chaotic properties of the fully disordered Kuramoto model
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/37555DOI: 10.1063/5.0272051
ISSN: 1054-1500
ISSN: 1089-7682
Registro completo
Mostrar el registro completo DCFecha
2025-07Derechos
© American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in León, I.; Pazó, D. Dynamics and chaotic properties of the fully disordered Kuramoto model. Chaos, 35(7), 073140 and may be found at https://doi.org/10.1063/5.0272051
Publicado en
Chaos, 2025, 35(7), 073140
Editorial
American Institute of Physics
Disponible después de
2026-08-01
Enlace a la publicación
Resumen/Abstract
Frustrated random interactions are a key ingredient of spin glasses. From this perspective, we study the dynamics of the Kuramoto model with quenched random couplings: the simplest oscillator ensemble with fully disordered interactions. We answer some open questions by means of extensive numerical simulations and a perturbative calculation (the cavity method). We show that frequency entrainment is not realized in the thermodynamic limit and that chaotic dynamics are pervasive in parameter space. In the weak coupling regime, we find closed formulas for the frequency shift and the dissipativeness of the model. Interestingly, the largest Lyapunov exponent is found to exhibit the same asymptotic dependence on the coupling constant irrespective of the coupling asymmetry, within the numerical accuracy.
Colecciones a las que pertenece
- D20 Artículos [480]
- D20 Proyectos de Investigación [338]
- IDIVAL Artículos [884]
- IDIVAL Proyectos de investigación [203]