Mostrar el registro sencillo

dc.contributor.authorMaxwell, Joshua W. C.es_ES
dc.contributor.authorRipoll Rozada, Jorgees_ES
dc.contributor.authorMackay, Angus S.es_ES
dc.contributor.authorAlwis, Imalaes_ES
dc.contributor.authorFord, Daniel J.es_ES
dc.contributor.authorTrought, Cameron B. J.es_ES
dc.contributor.authorSantos, Joana A.es_ES
dc.contributor.authorSmythe, Rhyll e.es_ES
dc.contributor.authorLiu, Joanna S. T.es_ES
dc.contributor.authorZuccolotto, Zackes_ES
dc.contributor.authorSchoenwaelder, Simone M.es_ES
dc.contributor.authorJackson, Shaun P.es_ES
dc.contributor.authorBarbosa Pereira, Pedro Josées_ES
dc.contributor.authorPayne, Richard J.es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-24T11:08:59Z
dc.date.available2025-09-24T11:08:59Z
dc.date.issued2025es_ES
dc.identifier.issn2041-6520es_ES
dc.identifier.issn2041-6539es_ES
dc.identifier.otherRYC2021-033063-Ies_ES
dc.identifier.urihttps://hdl.handle.net/10902/37403
dc.description.abstractHaematophagous organisms are a rich source of salivary anticoagulant polypeptides that exert their activity by blocking the catalytic site and one of two positively charged exosites on the host protease thrombin. Here, we describe a molecular engineering approach to hybridise post-translationally sulfated polypeptides from different blood-feeding organisms to enhance anticoagulant activity. This led to the discovery of a triply sulfated hybrid anticoagulant, XChimera, possessing fragments from flea, leech, and fly salivary polypeptides that exhibits femtomolar inhibitory activity against thrombin. The crystallographic structure of a complex of XChimera with thrombin shows that it displays a trivalent binding mode in which it simultaneously blocks three functional sites of the protease, the active site and exosites I and II. This trivalent chimera exhibited ultrapotent anticoagulant activity in a suite of in vitro clotting assays and was also shown to possess potent in vivo antithrombotic activity in a murine model of thrombosis.es_ES
dc.description.sponsorshipThis work was funded through National Health and Medical Research Council of Australia Investigator Grants (APP1174941; to R. J. P.; APP1176016; to S. P. J.) and was also supported in part by national funds through FCT – Fundaç˜ao para a Ciˆencia e a Tecnologia, I. P. (Portugal) under project UIDB/04293/2020 and in the scope of research grants PTDC/BIA-BQM/2494/2020 (https://doi.org/10.54499/PTDC/BIA-BQM/2494/2020) and 2022.03363.PTDC (https://doi.org/10.54499/2022.03363.PTDC); and a New South Wales (NSW, Australia) Ministry of Health (MOH) Cardiovascular Senior Researcher Grants awarded to S. M. S. J. R.-R. acknowledges the support of grant RYC2021- 033063-I funded by MCIN/AEI/10.13039/501100011033 and the European Union «NextGenerationEU»/PRTR. X-ray data collection was performed at BL13-XALOC beamline of ALBA Synchrotron with the collaboration of ALBA staff. The support of the X-Ray Crystallography, Biochemical and Biophysical Technologies and BioSciences Screening platforms of i3S (Porto, Portugal) is also acknowledged.es_ES
dc.format.extent28 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceChemical Science, 2025, 4734J, 1-28es_ES
dc.titleEngineering ultrapotent trivalent anticoagulants through hybridisation of salivary peptides from multiple haematophagous organismses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1039/D5SC04734Jes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1039/D5SC04734Jes_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International