Mostrar el registro sencillo

dc.contributor.authorMartínez Ibáñez, Eva
dc.contributor.authorLaso Cortabitarte, Jara 
dc.contributor.authorPérez Martínez, Marta María
dc.contributor.authorMartínez Vazquez, Raquel
dc.contributor.authorBaptista de Sousa, David
dc.contributor.authorMéndez, Diego
dc.contributor.authorOlaya Pérez, Elena
dc.contributor.authorMarchisio, Virginia
dc.contributor.authorAldaco García, Rubén 
dc.contributor.authorMargallo Blanco, María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-12T13:41:12Z
dc.date.available2025-09-12T13:41:12Z
dc.date.issued2025-05
dc.identifier.issn2168-0485
dc.identifier.urihttps://hdl.handle.net/10902/37161
dc.description.abstractInnovative protein sources, such as single cell protein (SCP) derived from unicellular organism biomass, are emerging as promising solutions to address food scarcity and meet global nutritional needs. This article aims to estimate the environmental impacts of SCP production using biomethane from fish industry waste through an ex-ante Life Cycle Assessment (LCA), focusing on scaling up a lab-scale process. The proposed scenarios include SCP production with biofertilizer recovery (baseline scenario) and the additional valorization of biomethane as grid gas, electricity, and/or heat (modified scenarios). The analysis follows a cradle-to-gate approach, and recovered materials and energy were included by expanding the system boundaries to account for avoided primary production. Results revealed significant differences between laboratory-scale and industrial-scale impacts, with reductions ranging from 60% to 96% across all impact categories when scaled up. Focusing on the industrial scale, the baseline scenario showed the poorest environmental performance, mainly due to biogenic methane emissions from unutilized biogas. In contrast, modified scenarios that incorporated various biomethane utilization pathways achieved substantial reductions across all impact categories. These findings suggest that the optimal system configuration combines the recovery of biomethane, heat, and electricity, underscoring the need for further research into its technical and economic feasibility within the food sector. This research highlights the utility of LCA in evaluating emerging technologies, identifying key environmental challenges, and guiding decision-making at early development stageses_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceACS Sustainable Chemistry and Engineering, 2025, 13, 8699-8710es_ES
dc.subject.otherSingle cell proteines_ES
dc.subject.otherLCAes_ES
dc.subject.otherScale-upes_ES
dc.subject.otherEnvironmental impactses_ES
dc.subject.otherFood wastees_ES
dc.titleEnvironmental insights into single-cell protein production: a life cycle assessment frameworkes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps;//doi.org/10.1021/acssuschemeng.5c02336es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acssuschemeng.5c02336
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International