Mostrar el registro sencillo

dc.contributor.authorCasabán Bartual, María Consuelo
dc.contributor.authorCompany Rossi, Rafael
dc.contributor.authorEgorova, Vera 
dc.contributor.authorFakharany, Mohamed
dc.contributor.authorJódar Sánchez, Lucas
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2025-09-11T08:13:20Z
dc.date.available2025-09-11T08:13:20Z
dc.date.issued2025-08-07
dc.identifier.issn0022-2526
dc.identifier.issn1467-9590
dc.identifier.urihttps://hdl.handle.net/10902/37116
dc.description.abstractThis paper introduces a numerical method, based on a front-fixing transformation together with a combination of the explicit finite difference schemes with the quadrature rules, to solve the Fisher-Kolmogorov, Petrovsky and Piskunov (KPP) population model that incorporates the combined complexities of nonlocal diffusion and free boundaries. The model utilizes nonlocal diffusion to capture intricate, potentially long-range, dispersal patterns of species. We propose two-stage front-fixing transformation that effectively maps the original integro-differential equation with two moving boundaries into a partial integro-differential equation on a fixed unit domain. The transformed system, which now includes an advection term and a spatially-scaled nonlocal integral, is then solved using a comparative analysis of several explicit finite difference schemes (explicit Euler scheme, upwind, and Lax?Wendroff) for the differential operator, coupled with Simpson's rule for numerical integration. Additionally, this work contributes to understanding accelerated spreading rates, particularly for fat-tailed kernels, by numerically validating theoretical predictions and providing new insights into how kernel properties influence population dynamics. The proposed method demonstrates considerable flexibility and accuracy across various kernel types and growth scenarios, confirming its robustness and computational efficiency, which is an important prerequisite for future extensions to more complex problems.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherBlackwell Publishing Ltdes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceStudies in Applied Mathematics, 2025, 155(2), e70094es_ES
dc.subject.otherDiffusive logistic modeles_ES
dc.subject.otherFinite difference methodes_ES
dc.subject.otherFisher-KPP modeles_ES
dc.subject.otherFront-fixing transformationes_ES
dc.subject.otherFree boundaryes_ES
dc.subject.otherLax–Wendroff schemees_ES
dc.subject.otherNonlocal diffusiones_ES
dc.titleA front-fixing numerical method for a free-boundary nonlocal diffusion logistic modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1111/sapm.70094es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1111/sapm.70094
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International